I am stuck in a problem $$ \int_{0}^{\pi/2}\int_{0}^{x} \frac{1}{1 + \cot\left(t\right)}\,\mathrm{d}t \,\mathrm{d}x$$
Using the convolution theorem I changed the double integral into a single integral \begin{align} &\int_\limits 0^{\pi/2} \left(\frac{\pi}{2}-x\right)\frac{\sin\left(x\right)} {\sin\left(x\right) + \cos\left(x\right)}\,\mathrm{d}x = \int_{0}^{\pi/2}\frac{x\cos\left(x\right)} {\sin\left(x\right) +\cos\left(x\right)}\,\mathrm{d}x \\[3mm] = &\ \int_{0}^{\pi/2}\frac{x}{1 + \tan\left(x\right)}\,\mathrm{d}x = \int_{0}^\infty\frac{\tan^{-1}\left(\theta\right)}{\left(1 + \theta\right)\left(1 + \theta^{2}\right)}\,\mathrm{d}\theta \end{align}
[Substituted $\tan\left(x\right) = \theta$]. Using integration by part $$ v =\frac{\tan^{-1}\left(\theta\right)}{1+\theta^2} \quad\mbox{and}\quad u=\frac{1}{1+\theta}, $$ I got the following integral as $ \displaystyle\frac{1}{2}\int_{0}^\infty \left[\frac{\tan^{-1}\left(\theta\right)}{1 + \theta}\right]^{2}\,\mathrm{d}\theta $.
I am not able to evaluate that.