(A) As Tyrone comments, you have to use the well-known fact that if $p : A \to B$ is a quotient map and $C$ is locally compact Hausdorff, then also $p \times 1_C$ and $1_C \times p$ are quotient maps.
Note that $(A,a_0) \wedge (B,b_0) = (A \times B)/(A \times \{b_0\} \cup \{a_0\} \times B)$ with basepoint $*$ = common equivalence class of the points in $A \times \{b_0\} \cup \{a_0\} \times B$. If $p_{A,B} : A \times B \to (A,a_0) \wedge (B,b_0)$ denotes the quotient map, then $p^{-1}_{AB}(*) = A \times \{b_0\} \cup \{a_0\} \times B$ and $p^{-1}_{A,B}([a,b]) = (a,b)$ for $[a,b] \ne *$.
Thus we get quotient maps
$$\phi : X \times Y \times Z \stackrel{p_{X,Y} \times 1_Z}{\longrightarrow} (X \wedge Y) \times Z \stackrel{p_{X \wedge Y,Z} }{\longrightarrow} (X \wedge Y) \wedge Z ,$$
$$\psi : X \times Y \times Z \stackrel{1_X \times p_{Y,Z}}{\longrightarrow} X \times (Y \wedge Z) Z \stackrel{p_{X, Y \wedge Z} }{\longrightarrow} X \wedge (Y \wedge Z) .$$
Let us check what these maps do. We have
$$\phi^{-1}([[x,y],z]) = \begin{cases} X \times Y \times \{z_0\} \cup X \times \{y_0\} \times Z \cup \{x_0\} \times Y \times Z & [[x,y],z] = * \\
(x,y,z) & [[x,y],z] \ne *
\end{cases} $$
A analogous formula is obtained for $\psi$. Thus both maps make the same identifications in $X \times Y \times Z$ which shows that the quotient spaces are homeomorphic. In fact, there exists a unique homeomorphisms $h : (X \wedge Y) \wedge Z \to X \wedge (Y \wedge Z)$ such that $h \circ \phi = \psi$. It is given by $h(([[x,y],z]) = [x,[y,z]]$.
(B) This is almost trivial. Let $\tau = \tau_{X,Y} : X \times Y \to Y \times X, \tau(x,y) = (y,x)$, be the switch map. It induces a unique function $\tau' : X \wedge Y \to Y \wedge X, \tau'([x,y]) =[y,x]$. We have $\tau' \circ p_{X,Y} = p_{Y,X} \circ \tau$ which shows that $\tau'$ is continous. But $\tau'_{Y,X} \circ \tau'_{X,Y} = 1$, thus $\tau'$ is a homeomorphism.