The map $$F: (L^\infty(\mathbb{T}, |f \, d\lambda|), \|\cdot\|_1) \to \mathbb{C}, \, g \mapsto \int_{\mathbb{T}} fg \, d\lambda$$ is a bounded linear functional and hence continuous since $$|F(g)| = \left|\int_{\mathbb{T}} fg \, d\lambda \right| = \left|\int_{\mathbb{T}} g \, d(f\, d\lambda)\right| \leq \int_{\mathbb{T}} |g| \, d |f \, d\lambda| = \|g\|_1$$
where we used that for any bounded measurable $g: \mathbb{T} \to \mathbb{C}$ we have $$\int_{\mathbb{T}} fg \, d\lambda = \int_{\mathbb{T}} g \, d(f \, d\lambda).$$
Furthermore $C(\mathbb{T})$ is $\|\cdot\|_1$-dense in $L^\infty(\mathbb{T}, |f \, d\lambda|)$ and $F$ vanishes on $C(\mathbb{T})$, so we obtain $F = 0$. Now $g = \frac{\overline{f}}{|f|+1} \in L^\infty(\mathbb{T}, |f \, d\lambda|)$ and therefore $$0 = F(g) = \int_{\mathbb{T}} \frac{|f|^2}{|f|+1} \, d\lambda,$$
so $f = 0$ $\lambda$-almost everywhere.
More generally it can be shown that for a regular complex measure $\nu$ on a locally compact Hausdorff space $X$ we have $$\int_X \phi \, d\nu = 0 \ \ \forall \phi \in C_c(X) \implies \nu = 0.$$
This is one component of the complex Riesz-Markov-Kakutani representation theorem, but the proof is analogous to the above since $C_c(X)$ is dense in $L^1(X, |\nu|)$.