Let $X$ be a random variable with distribution
$$P(X=x)=\binom{x-1}{k-1}p^k(1-p)^{x-k}\quad \text{ if } x=k, k+1, \cdots$$
How can I compute the moment generating function $\mathbb E(e^{tX})$?
I know that $$\mathbb E(e^{tX})=\sum_{x=k}^\infty \binom{x-1}{k-1}e^{tx}p^k(1-p)^{x-k}=\sum_{x=k}^\infty \binom{x-1}{k-1}(e^{t}(1-p))^xp^k(1-p)^{-k}$$
But I don't know how to go on.