It is well known that $\displaystyle \lim_{n\to \infty}\sqrt[n]{n!}=\infty$, however, if we let $n\to 0$ we have a different result with a beautiful combination of $e$ and $\gamma$, that is
$$\lim_{n\to 0}\sqrt[n]{n!}= e^{-\gamma}\tag{1}\label{1}$$
To prove result \eqref{1}, we observe that the limit attains the form of $1^{\infty}$ so we can write it as $$\lim_{n\to 0} \exp\left(\frac{\ln\Gamma(n+1)}{n}\right)\underbrace{=}_{\text{L'Hopital's rule}}\lim_{n\to 0} e^{\Gamma'(n+1)}=e^{\psi_0(1)}= e^{-\gamma}$$
Now I wish to know the limit of the following multifactorial form for $k\in\mathbb {Z^+}$
$$\lim_{n\to 0}\sqrt[n]{n\smash[b]{\underbrace{!! !!\cdots !}_{k}}}={?}\tag{2}\label{2}\\$$
For $k=1$ we are done above and for $k=2$ we get the limit $\sqrt{2} e^{-\frac{\gamma}{2}}$. To prove this we use the double factorial argument (see equation (5)) \begin{align}\lim_{n\to 0}\sqrt[n]{n!!}&=\lim_{n\to 0} \left(2^{\frac{n}{2}+\frac{1-\cos(\pi n)}{4}}\pi^{\frac{\cos(\pi n)-1}{4}}\Gamma\left(1+\frac{n}{2}\right)\right)^{\frac{1}{n}}\\&=\sqrt{2}\lim_{n\to 0} \sqrt[n]{\Gamma\left(1+\frac{n}{2}\right)}\\&=\sqrt 2\exp\lim_{n\to 0}\left(2^{-1} \Gamma\left(1+\frac{n}{2}\right)\psi_0\left(1+\frac{n}{2}\right)\right)\tag{L'Hopital's rule}\\&=\sqrt{2}e^{-\frac{\gamma}{2}}\end{align}
since for $k=1,2$ we have evaluated the limit. How to evaluate the limit of equation \eqref{2} for all $k>2$?