Using differentiation under integral sign, prove that $$\int_{0}^{\infty} e^{-\Big(x^2+\frac {a^2}{x^2}\Big)b^2} dx=\frac {\sqrt {\pi}}{2b}e^{-2ab^2}$$
My Attempt: Let, $$F(a)= \int_{0}^{\infty} e^{-\Big(x^2+\frac {a^2}{x^2}\Big)b^2} dx$$ Differentiate with respect to $a$ $$\frac {dF(a)}{da}=\int_{0}^{\infty} e^{-\Big(x^2+\frac {a^2}{x^2}\Big)b^2} \Bigg(-\frac {2ab^2}{x^2}\Bigg) dx$$ Put $\frac {a}{x}=y$ $$\frac {dF(a)}{da}=-2b^2 \int_{0}^{\infty} e^{-\Big(\frac {a^2}{y^2}+y^2\Big)b^2} dy$$ How to proceed after this?