Let $x$ be any set. Using ZFC axioms, how to show $(x,x)=\{\{x\}\} \neq x$?
Similar question: $\bigcup x \neq x?$
Solved questions: $x \neq P(x)$ ($x$ is a subset of $x$ but $x \notin x$ by the Foundation axiom)
$\{x\}=\{x,x\}\neq x$ (by the Foundation axiom)