I have a question regarding Gaussian copulas:
The multivariate Gaussian copula is defined as, $$ C(u_1,\dots,u_n;\Sigma) = \Phi_{\Sigma}(\Phi^{-1}(u_1),\dots,\Phi^{-1}(u_n)), $$ where $\Phi_{\Sigma}$ is a multivariate $n$-dimensional normal distribution with correlation matrix $\Sigma$ and $\Phi$ is the standard univariate cumulative distribution function. How can we show that the corresponding density is: \begin{align} c(u_1,\dots,u_n;\Sigma) &= \frac{1}{\sqrt{\mbox{det} \Sigma}}\exp \begin{pmatrix} - \displaystyle{\frac{1}{2}} \begin{bmatrix} \Phi^{-1}(u_1) \\ \vdots \\ \Phi^{-1}(u_n) \end{bmatrix}^{T} [\Sigma^{-1} - I ] \begin{bmatrix} \Phi^{-1}(u_1) \\ \vdots \\ \Phi^{-1}(u_n) \end{bmatrix} \end{pmatrix}, \end{align} where $I$ is the identity matrix?