Suppose we have a map $\mathbb R^n \to \text{Aut}(\mathbb R^{n}) = \textbf{GL}(\mathbb R^{n})$ with $A=(A_{ij}(x))$ and $A_{ij}$ all being smooth.
It is known that diagonalizable matrices with complex values are dense in set of $n\times n$ complex matrices, in particular matrices with real entries is dense in $M_n(\mathbb C)$ by the same proof if we allow diagonalization over $\mathbb C$. Thus for every $x\in \mathbb R^n$, we can choose a diagonalizable matrix $B_\varepsilon(x)$ with $\|A(x)-B_\varepsilon(x)\|<\varepsilon$.
However, fixing a compact set $K\subseteq \mathbb R^n$, can we choose a map $x\mapsto B_\varepsilon(x)$ wih ${(B_\varepsilon)}_{ij}$ smooth such that $\|A(x)-B_\varepsilon(x)\|<\varepsilon$ holds for all $x \in K$?
And $x\mapsto A(x)$ is indeed a fixed map $\mathbb R^n\to\textbf{GL}(\mathbb R^n)$.
– Markus Klyver Mar 25 '20 at 23:48