I can proof this situation on this way? If $A$ and $В$ are irreducible, then $AB$ is irreducible.
Proof: hyphothese: $A\geq0, B\geq 0$ are irredicible Thesis: $AB$ is irreducible.
If $A\geq0$ is irreducible, we have $\left(I+A\right)^{n-1}>0$, so $\left(I+A\right)^{n-1}A>0$
If $B\geq0$ is irreducible, we have $\left(I+B\right)^{n-1}>0$, so $\left(I+B\right)^{n-1}B>0$
So we have $\left(I+A\right)^{n-1}A\left(I+B\right)^{n-1}B>0$ if A and $\left(I+B\right)^{n-1}$ comute we have
$\left(I+A\right)^{n-1}\left(I+B\right)^{n-1}AB>0\Rightarrow \left(I+A+B+AB\right)^{n-1}AB>0$. How i conclude that $AB$ is irreducible?