Let $\Omega$ be a general sample space (possibly different from the set $[0,1]$). Let $f:\mathbb{R}\times \Omega \rightarrow \mathbb{R}$ be a function that satisfies your assumptions: For outcomes $y$ in the sample space $\Omega$, the random variables $f(x,y)$ (indexed by $x \in \mathbb{R}$) are non-generate and pairwise independent. In particular $f(x,y)$ is a measurable function of the outcome $y$ for each $x \in \mathbb{R}$. For simplicity of notation define $V_x(y) = f(x,y)$. Non-degenerate implies that for each $x \in \mathbb{R}$ there is a threshold $h_x$ such that
$$P[V_x(y)>h_x] \in (0,1)$$
Define the function $g:\mathbb{R}\times \Omega \rightarrow \mathbb{R}$ by
$$ g(x,y) = \left\{ \begin{array}{ll}
3 &\mbox{ if $x=0$ and $V_0(y)>h_0$} \\
2 & \mbox{ if $x=0$ and $V_0(y)\leq h_0$}\\
0 & \mbox{if $x\neq 0$ and $V_x(y)>h_x$}\\
1 & \mbox{if $x \neq 0$ and $V_x(y)\leq h_x$}
\end{array}\right.$$
Then for each distinct $x_1,x_2 \in \mathbb{R}$ the functions $g(x_1,y)$ and $g(x_2,y)$ are measurable functions of $y$, non-degenerate, and are independent random variables. However for $x_1=1$ and $x_2=2$:
$$G(y)=g(g(1,y),y) =\left\{\begin{array}{ll}
g(0,y) & \mbox{if $V_1(y)>h_1$} \\
g(1,y) & \mbox{ if $V_1(y)\leq h_1$}
\end{array}\right.$$
$$H(y)=g(g(2,y),y) =\left\{\begin{array}{ll}
g(0,y) & \mbox{if $V_2(y)>h_2$} \\
g(1,y) & \mbox{ if $V_2(y)\leq h_2$}
\end{array}\right.$$
Then
$$P[H =3]=P[V_2(y)>h_2]P[V_0(y)>h_0] > 0 $$
but
$$P[H=3|G=2]=0$$
So $G$ and $H$ are not independent.