I think the step that is is missing is
$$x = \sqrt[3]{6+ \sqrt[3]{6+\sqrt[3]{\color{red}x+6}}}$$
$$=\sqrt[3]{6+ \sqrt[3]{6+\sqrt[3]{6+\color{red}x}}}$$
$$= \sqrt[3]{6+ \sqrt[3]{6+\sqrt[3]{6+\color{red}{\sqrt[3]{6+ \sqrt[3]{6+\sqrt[3]{6+\color{blue}x}}} }}}}, $$
and we can continue to obtain the infinite expression
$$x = \sqrt[3]{6 + \sqrt[3]{6+\sqrt[3]{6+\cdots }}}$$
(This is actually invalid and handwavey and not legitimate... but let's go with it.)
Then, we can do
$$x = \sqrt[3]{6 + \color{blue}{\sqrt[3]{6 + \sqrt[3]{6+\sqrt[3]{6+\cdots }}}}}=\sqrt[3]{6 + \color{blue}x}.$$
And then, we continue.
The problem is, of course, what the #@%! is $\sqrt[3]{6 + \sqrt[3]{6+\sqrt[3]{6+\cdots }}}$ supposed to mean? Is that even well defined and can we do math on it?
And the answer is, yes.
If $a_0=6$ and $a_k = \sqrt[3]{6 + a_{k-1}}$ for $k>1$, then we can prove by induction that $0 < a_{k+1} < a_k\le 6$, with equality holding if and only if $k =0$. Therefore, $\{a_k\}$ is monotonically decreasing and bounded below, so $\lim_{n\to \infty} a_n = x$ for some real $x$, which if we wanted to, we could express as $$\sqrt[3]{6 + \sqrt[3]{6+\sqrt[3]{6+\cdots }}}$$ if we took $$\sqrt[3]{6 + \sqrt[3]{6+\sqrt[3]{6+\cdots }}}:= \lim_{n\to \infty} a_n$$ as a definition.
Now, for converging limits, $$x = \lim_{n\to \infty} a_n = \lim_{n\to \infty}a_{n+1} = \lim_{n\to\infty}\left(\sqrt[3]{6+a_n}\right) = \sqrt[3]{6 + \lim_{n\to \infty}a_n} = \sqrt[3]{6 + x}.$$
So we can do it.
I guess we can also do it without resorting to the infinite.
Let $?$ be notation for $<$ or for $>$ or for $+$, where we do not know which. However, since each of $<,>,=$ are transitive and preserved via "adding to both sides" and "cubing both sides", we may do the following manipulations.
If $x \enspace?\enspace \sqrt[3]{6+x}$, then
$$6+ x \enspace?\enspace 6 +\sqrt[3]{6+x}\Rightarrow$$
$$\sqrt[3]{6 + x} \enspace?\enspace \sqrt[3]{6 +\sqrt[3]{6+x}}\Rightarrow$$
$$x\enspace?\enspace\sqrt[3]{6 + x}\enspace?\enspace\sqrt[3]{6 +\sqrt[3]{6+x}}\Rightarrow$$
$$\sqrt[3]{6+x} \enspace?\enspace \sqrt[3]{6 +\sqrt[3]{6+x}} \enspace?\enspace \sqrt[3]{6+\sqrt[3]{6 +\sqrt[3]{6+x}}}\Rightarrow$$
$$x\enspace?\enspace\sqrt[3]{6+x} \enspace?\enspace \sqrt[3]{6 +\sqrt[3]{6+x}} \enspace?\enspace \sqrt[3]{6+\sqrt[3]{6 +\sqrt[3]{6+x}}}.$$
But we showed $$x = \sqrt[3]{6+\sqrt[3]{6 +\sqrt[3]{6+x}}}.$$
So by transitivity, $$x \enspace?\enspace x.$$ But by trichotomy, $x =x$ and $x \not < x$ and $x \not > x$. So it must be that $?$ is notation for $=$, and $x = \sqrt[6]{x+6}$.