We have a set of scalars $(A_{ij}\mid i,j\in\mathbb N)$, which are supposed to be the coefficients of a continuous linear operator $A$ on a real Hilbert space, with respect to an orthonormal basis $(e_i\mid i\in\mathbb N)$.
$$x=\sum_ix_ie_i\mapsto Ax=\sum_{i,j}A_{ij}x_je_i$$
$$A_{ij}=e_i\cdot Ae_j$$
When is this possible? How can we tell from $A_{ij}$ whether this produces a well-defined continuous operator?
Here are some necessary results of continuity:
$$\sup_{i,j}|A_{ij}|<\infty$$
$$\forall j,\quad\lVert Ae_j\rVert^2=\sum_iA_{ij}^2<\infty$$
$$\sup_j\lVert Ae_j\rVert^2=\sup_j\sum_iA_{ij}^2<\infty$$
Here are some sufficient conditions:
$$\max\{i+j\mid A_{ij}\neq0\}<\infty$$
$$\sum_{i,j}A_{ij}^2<\infty$$
$$\sum_{i,j}|A_{ij}|<\infty$$
$$\bigg(\sup_j\sum_i|A_{ij}|\bigg)\bigg(\sup_i\sum_j|A_{ij}|\bigg)<\infty$$
Is any such expression necessary and sufficient? Of course we need precisely
$$\lVert A\rVert^2=\sup_{x\neq0}\frac{\lVert Ax\rVert^2}{\lVert x\rVert^2}=\sup_{x\neq0}\frac{\sum_i\left(\sum_jA_{ij}x_j\right)^2}{\sum_ix_i^2}<\infty$$
and we can take $x$ to be in the countable dense set ($\cong c_{00}\cap\mathbb Q^\mathbb N\subset\ell^2$) of finite, rational, linear combinations of $e_i$. But this seems difficult to work with.
The adjoint $A^*$ has the same operator norm $\lVert A^*\rVert=\lVert A\rVert$, so $A$ is bounded if and only if $A^*$ is bounded. And $\lVert A^*A\rVert=\lVert A\rVert^2$, so $A$ is bounded if and only if $A^*A$ is bounded. Thus, we need only to consider symmetric positive-semidefinite operators.
$$S=A^*A;\quad S_{ij}=\sum_kA_{ki}A_{kj}$$