On $\Omega = C[0,\infty)$ we consider the smallest $\sigma$-algebra $\mathcal{F}$ which makes all projections $\omega \mapsto \pi_t(\omega):=\omega(t)$ measurable. Consequently, the cylinder sets, i.e. the sets of the form
$$\{\omega \in \Omega; \omega(t_1) \in A_1,\ldots,\omega(t_n) \in A_n\} = \bigcap_{j=1}^n \{\pi_{t_j} \in A_j\} \tag{1}$$
where $t_j \geq 0$ and $A_j$ are Borel sets, are a $\cap$-stable generator of $\mathcal{F}$. By the uniqueness of measure theorem, this means that every probability measure $\mathbb{P}$ on $(\Omega,\mathcal{F})$ is uniquely determined by its values on the cylinder sets,
$$\mathbb{P} \left( \bigcap_{j=1}^n \{\pi_{t_j} \in A_j\} \right).$$
Roughly speaking, this means that we "know" the measure $\mathbb{P}$ if we know its values on the cylinder sets.
Aim 1: Find a probability measure $\mathbb{P}$ on $(\Omega,\mathcal{F})$ such that the canonical process $\omega \mapsto B_t(\omega) := \omega(t)$ is a standard Brownian motion on $(\Omega,\mathcal{F},\mathbb{P})$.
Let $(W_t)_{t \geq 0}$ be a Brownian motion on some probability space $(\Omega',\mathcal{F}',\mathbb{Q})$ and assume that $(W_t)_{t \geq 0}$ has exclusively continuous sample paths. Now consider the mapping
$$\Omega' \ni \omega' \mapsto W_{\bullet}(\omega') \in C[0,\infty), \tag{2}$$
which maps each $\omega' \in \Omega'$ to its sample path $W_{\bullet}(\omega')$. Using that the cylinder sets $(1)$ are a generator of $\mathcal{F}$, it is not difficult to check that this mapping is measurable (if we equip $\Omega'$ with $\mathcal{F}'$ and $\Omega$ with $\mathcal{F}$). Since the mapping is measurable, it induces a measure on $(\Omega,\mathcal{F})$,
$$\mathbb{P}(F) := \mathbb{Q}(\{\omega' \in \Omega'; W_{\bullet}(\omega') \in F\}), \qquad F \in \mathcal{F}; \tag{3}$$
this is the push-forward of $\mathbb{Q}$ under the mapping $(2)$. Equivalently, $\mathbb{P}$ is the distribution of $W_{\bullet}$ (with respect to $\mathbb{Q}$). Now let $F$ be a cylinder set of the form $(1)$ and set $B_t(\omega):=\omega(t)$. Then
\begin{align*} &\mathbb{P}(\{\omega \in \Omega; B_{t_1}(\omega) \in A_1,\ldots,B_{t_n} \in A_n\}) \\ &= \mathbb{P}(\{\omega \in \Omega; \pi_{t_1}(\omega) \in A_1,\ldots, \pi_{t_n}(\omega) \in A_n\}) \\ &= \mathbb{P}(F) \\ &\stackrel{(3)}{=} \mathbb{Q}(\{\omega' \in \Omega'; W_{t_1}(\omega') \in A_1,\ldots,W_{t_n}(\omega') \in A_n\}). \end{align*} This shows that $(B_t)_{t \geq 0}$ and $(W_t)_{t \geq 0}$ have the same finite-dimensional distributions, and, as a consequence, $(B_t)_{t \geq 0}$ is a Brownian motion on $(\Omega,\mathcal{F},\mathbb{P})$.
Aim 2: Introduce the probability measures $\mathbb{P}^x$ on $(\Omega,\mathcal{F})$ .
Consider the shift $\tau_x(\omega) := x+\omega$ for $\omega \in \Omega$. The mapping $\tau_x: (\Omega,\mathcal{F}) \to (\Omega,\mathcal{F})$ is measurable, and, as above, we now introduce a new measure as a push-forward. More precisely, we set
$$\mathbb{P}^x(F) := \mathbb{P}(\tau_{x}^{-1}(F)), \qquad F \in \mathcal{F}, \tag{4}$$
where $\mathbb{P}$ is the probability measure from the first part of this answer. Note that $$\mathbb{P}^0=\mathbb{P}. \tag{5}$$ By the very definition of $\tau_{-x}$, we have $$\tau_{x}^{-1}(F) = \{\omega \in \Omega; \omega+x \in F\} = \{\omega \in \Omega; \omega \in F-x\},$$
and so $(4)$ can be equivalently written as
$$\mathbb{P}^x(F) = \mathbb{P}(F-x) \stackrel{(5)}{=} \mathbb{P}^0(F-x). \tag{6}$$
Take a cylinder set $F$ of the form $(1)$ and consider the canonical process $B_t(\omega)=\omega(t)$. Then
\begin{align*} &\mathbb{P}^x \left( \{\omega \in \Omega; B_{t_1}(\omega) \in A_1, \ldots,B_{t_n}(\omega) \in A_n\} \right)\\ \quad &= \mathbb{P}^x \left( \{\omega \in \Omega; \pi_{t_1}(\omega) \in A_1,\ldots,\pi_{t_n}(\omega) \in A_n\} \right) \\\quad &= \mathbb{P}^x(F) \\ \quad&\stackrel{(6)}{=} \mathbb{P}(F-x) \\ \quad &= \mathbb{P} \left( \{\omega \in \Omega; x+B_{t_1}(\omega) \in A_1, \ldots,x+B_{t_n}(\omega) \in A_n\} \right). \tag{7} \end{align*}
For $n=1$ this shows $$\mathbb{P}^x(B_t \in A) = \mathbb{P}(x+B_t \in A)$$ for any Borel set $A$, and so $$\mathbb{E}^x(f(B_t)) = \mathbb{E}(f(x+B_t)). \tag{8}$$ (Note that there are no conditional expectations around here; these are all "classical" expectations with respect to a probability measure.) Moreover, the calculation in $(7)$ shows that $(B_t)_{t \geq 0}$ is a Brownian motion on $(\Omega,\mathcal{F},\mathbb{P}^x)$ which starts ($\mathbb{P}^x$-)almost surely at $B_0=x$. Since $(B_t)_{t \geq 0}$ is the canonical process, we find from $(6)$ that
$$\mathbb{P}^x(F) = \mathbb{P}(F-x) = \mathbb{P}(B_{\bullet} \in F-x) = \mathbb{P}(x+B_{\bullet} \in F),$$
i.e. $\mathbb{P}^x$ is nothing but the distribution of $x+B_{\bullet}$ (w.r.t. $\mathbb{P}$).