0

Does there exist function $ f $ that is smooth but not analytic for all $x\in \Bbb{R}$? ($f $ is a Real-valued function)

dmtri
  • 3,328
추민서
  • 560

1 Answers1

0

$$\phi(x) = e^{-1/(1-x^2)} 1_{|x|< 1}\in C^\infty_c(\Bbb{R}), \qquad \Phi(x) = \sum_{k=0}^\infty e^{-e^{e^k}}\sum_{n=-\infty}^\infty \phi(2^k x+n) \in C^\infty(\Bbb{R})$$

reuns
  • 79,880