It is easy to prove:
$$e^{\ln\left(1+x\right)}=1+x$$
in algebraic way. However, how about prove it by Taylor expansion?
Know that: $$\ln\left(1+x\right)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\dfrac{x^4}{4}+\cdots\\e^z=1+z+\dfrac{z^2}{2}+\dfrac{z^3}{6}+\dfrac{z^4}{24}+\cdots$$ Then, $$e^{\ln\left(1+x\right)}=e^{x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\dots}=e^x\cdot e^{-\frac{x^2}{2}}\cdot e^\frac{x^3}{3}\cdot e^{-\frac{x^4}{4}}\cdots\\=\left(1+x+\dfrac{1}{2}x^2+\dfrac{1}{6}x^3+\cdots\right)\left[1-\dfrac{x^2}{2}+\dfrac{1}{2}\left(\dfrac{x^2}{2}\right)^2-\dfrac{1}{6}\left(\dfrac{x^2}{2}\right)^3+\cdots\right]\left[1+\dfrac{x^3}{6}+\dfrac{1}{2}\left(\dfrac{x^3}{6}\right)^2+\dfrac{1}{6}\left(\dfrac{x^3}{6}\right)^3+\cdots\right]\left[1+\dfrac{x^4}{24}+\dfrac{1}{2}\left(\dfrac{x^4}{24}\right)^2+\dfrac{1}{6}\left(\dfrac{x^4}{24}\right)^3+\cdots\right]$$ Till here, I am stuck. This expansion is very big that I can't really simplify. Though I find the coefficient of $x^0,x^1,x^2,x^3$ are $1,1,0,0$ respectively. However, I can't prove the higher degree coefficient. If there are someone can answer or giving tips, that's appreciated. Thank you!