If $p$ and $q$ are positive integers such that $\frac{7}{10}<\frac{p}{q}<\frac{11}{15}$ then the smallest possible value of $q$ is:
$(A)\quad 60;\quad (B)\quad 30;\quad (C)\quad 25;\quad (D)\quad 7$.
What is the correct way to solve this kind of problems? I have tried to simplify the given inequality:
$$0.70<\frac{p}{q}< \approx0.73 \quad\text{ or }\quad \frac{21}{30}<\frac{p}{q}<\frac{22}{30}$$
Thank you in advance!