For the restricted case where $f$ is differentiable one can derive a solution. First, the derivative w.r.t. to $\lambda$ is
$$\frac{\partial\operatorname{Prox}_{ \lambda f( u ) } \left( x \right)}{\partial\lambda} = \lim_{\epsilon\to 0}\frac{1}{\epsilon}\left[\operatorname{Prox}_{ (\lambda + \epsilon) f( u ) } \left( x \right) - \operatorname{Prox}_{ \lambda f( u ) } \left( x \right)\right]$$
The solution to $\operatorname{Prox}_{ (\lambda + \epsilon) f( u ) } \left( x \right)$ can be computed from a simple Taylor expansion. In particular, any solution has to fulfill
$$(\lambda + \epsilon) \nabla f(u) + (u - \mu x) = 0$$
$$\Leftrightarrow (\lambda + \epsilon) \nabla f(u^{*} + du) + u^{*} + du - \mu x = 0$$
where $u^{*} = \operatorname{Prox}_{ \lambda f( u ) } \left( x \right)$. Then, with $H_f(u^{*})$ being the Hessian of $f$,
$$\Leftrightarrow (\lambda + \epsilon) (\nabla f(u^{*}) + H_f(u^{*}) du) + u^{*} + du - \mu x = 0$$
$$\Leftrightarrow \epsilon \nabla f(u^{*}) + (\lambda + \epsilon) H_f(u^{*}) du + du = 0$$
Hence,
$$du = -\epsilon\left[(\lambda + \epsilon)H_f(u^{*}) + I\right]^{-1}\nabla f(u^{*})$$
$$\Rightarrow \frac{\partial\operatorname{Prox}_{ \lambda f( u ) } \left( x \right)}{\partial\lambda} = -\left[\lambda H_f(u^{*}) + I\right]^{-1}\nabla f(u^{*})$$
In a very similar way we can find
$$\frac{\partial\operatorname{Prox}_{ \lambda f( u ) } \left( x \right)}{\partial\mu} = \left[\lambda H_f(u^{*}) + I\right]^{-1} x$$