OK, let's start heavy work as it has a lot of calculations.
let ellipse is $ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 $ ,$c^2=a^2-b^2$, so $F1(c,0),F2(-c,0)$, for any point at ellipse, we can always let $x=acosQ,y=bsinQ$
let $A(acosQ,bsinQ), B(acosQ1,bsinQ1),C(acosQ2,bsinQ2)$
since $A,F1,B$ co-line, so $\dfrac{bsinQ-0}{acosQ-c}=\dfrac{0-bsinQ1}{c-acosQ1}$,ie.$ \dfrac{sinQ}{acosQ-c}=\dfrac{sinQ1}{acosQ1-c} $ ,$asinQcosQ1-csinQ=asinQ1cosQ-csinQ1$,$ a(sinQcosQ1-cosQsinQ1)=c(sinQ-sinQ1)$ , $asin(Q-Q1)=2c*cos\dfrac{Q+Q1}{2}sin\dfrac{Q-Q1}{2} $, $2a*sin\dfrac{Q-Q1}{2}cos\dfrac{Q-Q1}{2}=2c*cos\dfrac{Q+Q1}{2}sin\dfrac{Q-Q1}{2}$,$a*cos\dfrac{Q-Q1}{2}=c*cos\dfrac{Q+Q1}{2}$, $a(cos\dfrac{Q}{2}cos\dfrac{Q1}{2}+sin\dfrac{Q}{2}sin\dfrac{Q1}{2})=c(cos\dfrac{Q}{2}cos\dfrac{Q1}{2}-sin\dfrac{Q}{2}sin\dfrac{Q1}{2}) $,$a(1+tan\dfrac{Q}{2}tan\dfrac{Q1}{2})=c(1-tan\dfrac{Q}{2}tan\dfrac{Q1}{2}),(a+c)tan\dfrac{Q}{2}tan\dfrac{Q1}{2}=c-a$,now we get a important equation : $tan\dfrac{Q1}{2}=\dfrac{c-a}{c+a}cot\dfrac{Q}{2}$
sine $A,F2,C $ co-line,so $\dfrac{bsinQ-0}{acosQ+c}=\dfrac{0-bsinQ2}{-c-acosQ2}$,with similar work, we get $tan\dfrac{Q2}{2}=\dfrac{c+a}{c-a}cot\dfrac{Q}{2}$ .
for line $BF2$, we have $\dfrac{y-0}{x+c}=\dfrac{0-bsinQ1}{-c-acosQ1}$,RHS$ =\dfrac{bsinQ1}{acosQ1+c}=\dfrac{b*\dfrac{2tan\dfrac{Q1}{2}}{1+tan^2\dfrac{Q1}{2}}}{a*\dfrac{1-tan^2\dfrac{Q1}{2}}{1+tan^2\dfrac{Q1}{2}}+c} $=$\dfrac{2b*tan\dfrac{Q1}{2}}{a+c+(c-a)tan^2\dfrac{Q1}{2}}$, now we replace $tan\dfrac{Q1}{2}$,
RHS=$\dfrac{2b*\dfrac{c-a}{c+a}*cot\dfrac{Q}{2}}{c+a+(c-a)(\dfrac{c-a}{c+a})^2*cot^2\dfrac{Q}{2}}$=$\dfrac{2(c^2-a^2)b*cot\dfrac{Q}{2}}{(a+c)^3+(c-a)^3*cot^2\dfrac{Q}{2}}$=$\dfrac{-2b^3*sin\dfrac{Q}{2}cos\dfrac{Q}{2}}{a^3(sin^2\dfrac{Q}{2}-cos^2 \dfrac{Q}{2})+3a^2c+c^3+3ac^2(sin^2\dfrac{Q}{2}-cos^2 \dfrac{Q}{2})}$=$\dfrac{-b^3sinQ}{c(3a^2+c^2)-a(a^2+3c^2)cosQ}$, then
$y=\dfrac{-b^3sinQx}{c(3a^2+c^2)-a(a^2+3c^2)cosQ}+\dfrac{-b^3c*sinQ}{c(3a^2+c^2)-a(a^2+3c^2)cosQ}$------formula 1,
for line CF1: $\dfrac{y-0}{x-c}=\dfrac{0-bsinQ2}{c-acosQ2}$,with same work, we get RHS=$\dfrac{b^3sinQ}{c(c^2+3a^2)+a(a^2+3c^2)cosQ}$, so we have
$y=\dfrac{b^3sinQx}{c(3a^2+c^2)+a(a^2+3c^2)cosQ}-\dfrac{b^3c*sinQ}{c(3a^2+c^2)+a(a^2+3c^2)cosQ}$------formula 2,
with two formulas, we get $ x= \dfrac{-a(a^2+3c^2)cosQ}{3a^2+c^2} ,y=\dfrac{-b^3sinQ}{3a^2+c^2}$,if you want feel easy, let $Q=\pi+Q3$, then $x= \dfrac{a(a^2+3c^2)cosQ3}{3a^2+c^2} ,y=\dfrac{b^3sinQ3}{3a^2+c^2}$,
let $a_1=\dfrac{a(a^2+3c^2)}{3a^2+c^2},b_1=\dfrac{b^3}{3a^2+c^2}$,
we finally get for$ P(x,y), x=a_1*cosQ3,y=b_1*sinQ3 $,which means P is on a ellipse,the focus c1 should be :$c_1^2=a_1^2-b_1^2$,again we have some work to do,
RHS=$[\dfrac{a(a^2+3c^2)}{3a^2+c^2}]^2-[\dfrac{b^3}{3a^2+c^2}]^2$=$\dfrac{[a^3+3ac^2)]^2-b^6}{(3a^2+c^2)^2}=\dfrac{a^6+6a^4c^2+9a^2c^4-(a^2-c^2)^3}{(3a^2+c^2)^2}=\dfrac{c^2(c^4+6a^2c^2+9a^4)}{(3a^2+c^2)^2}=c^2$,
it means it has same focus (c,0),(-c,0). that is all.