10

Given an elipse with two focus $F_{1}$ an $F_{2}$, and $A$ is an arbitrary point at the elipse. Stright line $AF_{1}$ has another intersection point $B$ with the elipse, and $AF_{2}$ has another intersection point $C$ with the elipse.

And point $P$ is the intersection of line $BF_{2}$ and $CF_{1}$, now the problem is to prove that $|PF_{1}|+|PF_{2}|$ is constant.

Thanks in advance!

easymath3
  • 982

3 Answers3

3

OK, imagine you have tacks at the points $(-c,0$ and $(c,0)$, which hold each end of a string of length $2 a$. We draw an ellipse by holding a pen taut against the string. The sum of the distances to a point on the ellipse from each of the tack points is

$$\sqrt{(x+c)^2+y^2} + \sqrt{(x-c)^2+y^2} = 2 a$$

The trick is to manage the algebra so that the derivation is readable. First, square both sides to get

$$(x-c)^2 + (x+c)^2 + 2 y^2 + 2 \sqrt{x^2+y^2+c^2+2 c x} \sqrt{x^2+y^2+c^2-2 c x} = 4 a^2$$

This simplifies a little to

$$x^2+y^2+c^2+\sqrt{(x^2+y^2+c^2)^2-4 c^2 x^2} = 2 a^2$$

Now we need to rid ourselves of this remaining square root by isolating it:

$$\begin{align}(x^2+y^2+c^2)^2-4 c^2 x^2 &= [2 a^2 - (x^2+y^2+c^2)]^2\\ &= 4 a^4 - 4 a^2 (x^2+y^2+c^2) + (x^2+y^2+c^2)^2 \end{align}$$

We have some fortuitous cancellation which leaves us with a quadratic. Rearrange to get

$$(a^2-c^2) x^2 + a^2 y^2 = a^2 (a^2-c^2)$$

or, in standard form:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2-c^2} = 1$$

Note that, for an ellipse, $a>c$. We interpret $a$ to be the semimajor axis, $c$ to be the focal length, and $b=\sqrt{a^2-c^2}$ is the semiminor axis.

To prove that the expression for the ellipse has the sum of the distances from the foci being constant, work backward from this sequence.

Ron Gordon
  • 141,538
  • 2
    That's a good answer to a different question. The problem is about a construction that forms one ellipse from another. – zyx Mar 19 '13 at 02:22
  • 1
    Then I quote Emily Latella: "Never mind!" (But I'll keep it up anyway in case someone wants to know how to derive an ellipse from its foci.) – Ron Gordon Mar 19 '13 at 02:25
1

OK, let's start heavy work as it has a lot of calculations.

let ellipse is $ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 $ ,$c^2=a^2-b^2$, so $F1(c,0),F2(-c,0)$, for any point at ellipse, we can always let $x=acosQ,y=bsinQ$

let $A(acosQ,bsinQ), B(acosQ1,bsinQ1),C(acosQ2,bsinQ2)$

since $A,F1,B$ co-line, so $\dfrac{bsinQ-0}{acosQ-c}=\dfrac{0-bsinQ1}{c-acosQ1}$,ie.$ \dfrac{sinQ}{acosQ-c}=\dfrac{sinQ1}{acosQ1-c} $ ,$asinQcosQ1-csinQ=asinQ1cosQ-csinQ1$,$ a(sinQcosQ1-cosQsinQ1)=c(sinQ-sinQ1)$ , $asin(Q-Q1)=2c*cos\dfrac{Q+Q1}{2}sin\dfrac{Q-Q1}{2} $, $2a*sin\dfrac{Q-Q1}{2}cos\dfrac{Q-Q1}{2}=2c*cos\dfrac{Q+Q1}{2}sin\dfrac{Q-Q1}{2}$,$a*cos\dfrac{Q-Q1}{2}=c*cos\dfrac{Q+Q1}{2}$, $a(cos\dfrac{Q}{2}cos\dfrac{Q1}{2}+sin\dfrac{Q}{2}sin\dfrac{Q1}{2})=c(cos\dfrac{Q}{2}cos\dfrac{Q1}{2}-sin\dfrac{Q}{2}sin\dfrac{Q1}{2}) $,$a(1+tan\dfrac{Q}{2}tan\dfrac{Q1}{2})=c(1-tan\dfrac{Q}{2}tan\dfrac{Q1}{2}),(a+c)tan\dfrac{Q}{2}tan\dfrac{Q1}{2}=c-a$,now we get a important equation : $tan\dfrac{Q1}{2}=\dfrac{c-a}{c+a}cot\dfrac{Q}{2}$

sine $A,F2,C $ co-line,so $\dfrac{bsinQ-0}{acosQ+c}=\dfrac{0-bsinQ2}{-c-acosQ2}$,with similar work, we get $tan\dfrac{Q2}{2}=\dfrac{c+a}{c-a}cot\dfrac{Q}{2}$ .

for line $BF2$, we have $\dfrac{y-0}{x+c}=\dfrac{0-bsinQ1}{-c-acosQ1}$,RHS$ =\dfrac{bsinQ1}{acosQ1+c}=\dfrac{b*\dfrac{2tan\dfrac{Q1}{2}}{1+tan^2\dfrac{Q1}{2}}}{a*\dfrac{1-tan^2\dfrac{Q1}{2}}{1+tan^2\dfrac{Q1}{2}}+c} $=$\dfrac{2b*tan\dfrac{Q1}{2}}{a+c+(c-a)tan^2\dfrac{Q1}{2}}$, now we replace $tan\dfrac{Q1}{2}$,

RHS=$\dfrac{2b*\dfrac{c-a}{c+a}*cot\dfrac{Q}{2}}{c+a+(c-a)(\dfrac{c-a}{c+a})^2*cot^2\dfrac{Q}{2}}$=$\dfrac{2(c^2-a^2)b*cot\dfrac{Q}{2}}{(a+c)^3+(c-a)^3*cot^2\dfrac{Q}{2}}$=$\dfrac{-2b^3*sin\dfrac{Q}{2}cos\dfrac{Q}{2}}{a^3(sin^2\dfrac{Q}{2}-cos^2 \dfrac{Q}{2})+3a^2c+c^3+3ac^2(sin^2\dfrac{Q}{2}-cos^2 \dfrac{Q}{2})}$=$\dfrac{-b^3sinQ}{c(3a^2+c^2)-a(a^2+3c^2)cosQ}$, then

$y=\dfrac{-b^3sinQx}{c(3a^2+c^2)-a(a^2+3c^2)cosQ}+\dfrac{-b^3c*sinQ}{c(3a^2+c^2)-a(a^2+3c^2)cosQ}$------formula 1,

for line CF1: $\dfrac{y-0}{x-c}=\dfrac{0-bsinQ2}{c-acosQ2}$,with same work, we get RHS=$\dfrac{b^3sinQ}{c(c^2+3a^2)+a(a^2+3c^2)cosQ}$, so we have

$y=\dfrac{b^3sinQx}{c(3a^2+c^2)+a(a^2+3c^2)cosQ}-\dfrac{b^3c*sinQ}{c(3a^2+c^2)+a(a^2+3c^2)cosQ}$------formula 2,

with two formulas, we get $ x= \dfrac{-a(a^2+3c^2)cosQ}{3a^2+c^2} ,y=\dfrac{-b^3sinQ}{3a^2+c^2}$,if you want feel easy, let $Q=\pi+Q3$, then $x= \dfrac{a(a^2+3c^2)cosQ3}{3a^2+c^2} ,y=\dfrac{b^3sinQ3}{3a^2+c^2}$,

let $a_1=\dfrac{a(a^2+3c^2)}{3a^2+c^2},b_1=\dfrac{b^3}{3a^2+c^2}$,

we finally get for$ P(x,y), x=a_1*cosQ3,y=b_1*sinQ3 $,which means P is on a ellipse,the focus c1 should be :$c_1^2=a_1^2-b_1^2$,again we have some work to do,

RHS=$[\dfrac{a(a^2+3c^2)}{3a^2+c^2}]^2-[\dfrac{b^3}{3a^2+c^2}]^2$=$\dfrac{[a^3+3ac^2)]^2-b^6}{(3a^2+c^2)^2}=\dfrac{a^6+6a^4c^2+9a^2c^4-(a^2-c^2)^3}{(3a^2+c^2)^2}=\dfrac{c^2(c^4+6a^2c^2+9a^4)}{(3a^2+c^2)^2}=c^2$,

it means it has same focus (c,0),(-c,0). that is all.

chenbai
  • 7,681
0

Let $AF_1=m,AF_2=n$,$BF_1=p,CF_2=q$.

Lemma$$\frac1m+\frac1p=\frac1n+\frac1q=\frac{2a}{b^2}$$

by def :$$m+n=p+BF_2=q+CF_1=2a$$

Using Menelaus' theorem and $CP=CF_1-F_1P$,we have $$\frac{PF_1\cdot BA\cdot F_2C}{F_1B\cdot AF_2\cdot CP}=1$$ ,we Omit tedious simplification $$PF_1=\frac{\frac{4a^2n}{b^2}-2a-n}{\frac{4a^2}{b^2}-1}$$ Similarly, $$PF_2=\frac{\frac{4a^2m}{b^2}-2a-m}{\frac{4a^2}{b^2}-1}$$ then $$PF_1+PF_2=\frac{2a(4a^2-3b^2)}{4a^2-b^2}$$