Let $(f_n)$ a cauchy sequence for $\|f\|_\infty =\sup_{[0,1]}|f|$ of $\mathcal C([0,1])$. Prove that $(f_n)$ converges to a function $f\in \mathcal C([0,1])$.
I made a different proof than my course. Is it correct ? I just need to prove that there is a function $f$ s.t. $f_n\to f$ uniformly. So I did as follow :
Let $\varepsilon >0$. There is $N\in \mathbb N$ s.t. $n,m\geq N$ we have $\|f_n-f_m\|_\infty <\frac{\varepsilon}{2} $. In particular, $(f_n(x))_n$ is a Cauchy sequence, and thus converges to a $f(x)$.
Let $n\geq N$. There is $x_n\in [0,1]$ s.t. $$\|f_n-f\|_\infty -\frac{\varepsilon}{2} \leq |f_n(x_n)-f(x_n)|.$$ Let $m\geq N$. Then $$|f_n(x_n)-f(x_n)|\leq |f_n(x_n)-f_m(x_n)|+|f_m(x_n)-f(x_n)|\leq \frac{\varepsilon }{2}+\underbrace{|f_m(x_n)-f(x_n)|}_{\to 0, m\to \infty }\to \frac{\varepsilon }{2}.$$
Therefore $$\|f_n-f\|_\infty -\frac{\varepsilon }{2}\leq \frac{\varepsilon }{2}\implies \|f_n-f\|_\infty \leq \varepsilon ,$$ for all $n\geq N$. This prove that $f_n\to f$ uniformly.
Does it works ?