Problem :
Evaluate $$\int_{-\infty}^{\infty} \frac{x^2 \cos (\pi x)}{(x^2 + 1)(x^2 + 2)}dx$$
Use only real integral.
What I did :
$$\int_{-\infty}^{\infty} \frac{x^2 \cos (\pi x)}{(x^2 + 1)(x^2 + 2)}dx$$
$$=2\int_{0}^{\infty} \frac{x^2 \cos (\pi x)}{(x^2 + 1)(x^2 + 2)}dx$$
$$=2\int_{0}^{\infty} \left( \frac{2\cos(\pi x)}{x^2+2} - \frac{\cos (\pi x)}{x^2 + 1}\right) dx$$
Any easy way to calculate this? or idea like differentiate under the integral sign?