I have the following (possibly trivial) observation:
Let $K$ be an $\mathbb{F}$-vector space (I believe the argument also works for free modules), and let $X\subseteq K$ be it's basis with cardinality $\kappa:=\vert X\vert$. Denote also $\lambda:=\vert \mathbb{F}\vert$. Then:
$\vert K\vert=\begin{cases} 1 &, \kappa=0 \\ \lambda^\kappa &, \kappa,\lambda < \aleph_0 \\ \lambda &, 0<\kappa< \lambda, \lambda\geq \aleph_0 \\ \kappa &, \kappa\geq \vert X \vert \end{cases} $
For $\kappa \leq \aleph_0$ or I think the proof is relatively straight-forward, so I am not intersted. But when the cardinality is infinite the argument goes as follows (I write to verify). Define for all $m\in \mathbb{N}$
$K_m:=\Big\{ \sum\limits_{i=1}^m a_i \cdot x_i \Big\vert \; x_i\in X, a_i\in \mathbb{F} \quad \text{for all} \; i\in[m] \Big\}$
Then we know that $K=\underset{m=1}{\overset{\infty}{\bigcup}}K_m$, since $X$ generates $K$. We can see that:
$\vert K_m \vert =\vert \mathbb{F}\times X\vert^m= \big( \lambda \cdot \kappa \big)^m$
And since the cardinality of at least one is infinite, we can conclude that:
$\vert K_m\vert= \max\big\{ \lambda, \kappa \big\}$
And finally:
$\vert K\vert \leq \sum\limits_{m=1}^{\infty}\vert K_m\vert \leq \sum\limits_{m=1}^{\infty} \max\big\{ \lambda, \kappa \big\}= \max\big\{ \lambda, \kappa \big\}$
Finally since $K_m\subseteq K$, we know that $\max\big\{ \lambda, \kappa \big\}\leq \vert K\vert$. Which shows the observation.
First of all my question is (just to verify), does this observation not also translates to free modules?
Secondly, I can conclude by this arguement that $\vert K^*\vert=2^\kappa$ if $\kappa\geq\lambda$ and $\kappa\geq \aleph_0$. Is there an easy way to show that $\vert K^*\vert= 2^\kappa$ when $\lambda>\kappa \geq \aleph_0$?
I would appreciate any new insight into the matter.