2

Use a suitable telescoping sum to find a simpler expression for the sum $1^4+2^4+...+n^4$ where $n\in \mathbb{N}$

Prove by mathematical induction

MITjanitor
  • 2,728
  • 1
  • 23
  • 48

1 Answers1

2

The suitable telescoping sum might be $$\sum_{k=1}^n \left[(k+1)^5-k^5\right]=(n+1)^5-1.$$ By expanding the left hand side and recalling formulas for $\sum k$, $\sum k^2$ and $\sum k^3$, you can solve for the desired sum.

Jonathan
  • 8,568
  • 2
  • 24
  • 40