I want to compute the angle between vectors by means of the formula given here,
$$ \theta = 2\arctan2 \left( \left|\left| \frac{\textbf{y}}{\|\textbf{y}\|} - \frac{\textbf{x}}{\|\textbf{x}\|} \right|\right|, \left|\left| \frac{\textbf{y}}{\|\textbf{y}\|} + \frac{\textbf{x}}{\|\textbf{x}\|}\right|\right| \right) $$
Provided that I have the coordinates of $\textbf{x}$ and $\textbf{y}$ in the basis $B$. Intuitively makes no sense to explicitly perform the change of basis but I cannot find the proper expression.
Concretely, my problem is,
Given a basis $B=\{ \textbf{u},\textbf{v},\textbf{w}\}$, I want to compute the angle between vectors $\textbf{x}$ and $\textbf{y}$ which are given by,
$$\textbf{x} = \alpha\textbf{u}+\beta\textbf{v}+\gamma\textbf{w}$$ $$\textbf{y} = \delta\textbf{u}+\epsilon\textbf{v}+\zeta\textbf{w}$$
without explicitly perform the change of basis first.