If you're interested in IMO 1983-style inequalities, please consider the following problem:
Given three positive real numbers $a, b, c$ that form the side lengths of a triangle, prove inequality: $$3\left ( a^{2}b\left ( a- b \right )+ b^{2}c\left ( b- c \right )+ c^{2}a\left ( c- a \right ) \right )\geq b\left ( a+ b- c \right )\left ( a- c \right )\left ( c- b \right )$$
- If $c\neq\operatorname{med}\left ( a, b, c \right )$, then the inequality is clearly true by sign analysis.
- The critical case is when $c= \operatorname{med}\left ( a, b, c \right )$, i.e., when $c$ is the median among the three values.
In this case, $\left ( a- c \right )\left ( c- b \right )= 0$, and that occurs when: $$c= \frac{c^{2}+ ab}{a+ b}$$ To address this case, I attempted to prove the identity: $$f\left ( c \right )- f\left ( \frac{c^2+ ab}{a+ b} \right )= \left ( a- c \right )\left ( c- b \right )\cdot F\geq 0$$ where $$f\left ( c \right )= 3\left ( a^{2}b\left ( a- b \right )+ b^{2}c\left ( b- c \right )+ c^{2}a\left ( c- a \right ) \right )- b\left ( a+ b- c \right )\left ( a- c \right )\left ( c- b \right )$$ However, I haven’t succeeded in completing the proof. I discovered this inequality using discriminant analysis and coefficient comparison techniques.
