I think the confusion stems from the abuse (in my eyes) of $\nabla$ as a vector and not explicitly denoting what the operator is applied to.
Let us translate the expressions into array notation with
\begin{align}
\nabla"="\begin{bmatrix} \frac{\partial}{\partial x_1} \\
\frac{\partial}{\partial x_2} \\
\frac{\partial}{\partial x_3}
\end{bmatrix}\,,\quad
A"="\begin{bmatrix} A_1\\A_2\\A_3\end{bmatrix}\,,\quad
B"="\begin{bmatrix} B_1\\B_2\\B_3\end{bmatrix}\\
\end{align}
Then what is meant by $B\cdot\nabla$ is the scalar expression
$$
B\cdot\nabla=B_1\frac{\partial}{\partial x_1}+
B_2\frac{\partial}{\partial x_2}+
B_3\frac{\partial}{\partial x_3}
$$
Now "multiplying" with, i.e. applying the resulting operator on the vector $A$ gives
\begin{align}
(B\cdot\nabla)A &=\left(B_1\frac{\partial}{\partial x_1}+
B_2\frac{\partial}{\partial x_2}+
B_3\frac{\partial}{\partial x_3}\right)\begin{bmatrix} A_1\\A_2\\A_3\end{bmatrix}\\
&=\begin{bmatrix}
B_1\frac{\partial{A_1}}{\partial x_1}+B_2\frac{\partial{A_1}}{\partial x_2}
+B_3\frac{\partial{A_1}}{\partial x_3}\\
B_1\frac{\partial{A_2}}{\partial x_1}+B_2\frac{\partial{A_2}}{\partial x_2}
+B_3\frac{\partial{A_2}}{\partial x_3}\\
B_1\frac{\partial{A_3}}{\partial x_1}+B_2\frac{\partial{A_3}}{\partial x_2}
+B_3\frac{\partial{A_3}}{\partial x_3}\\
\end{bmatrix}
\end{align}