Let $\mathcal{H}$ be an infinite dimensional separable Hilbert Space and $T\in\mathscr{B(\mathcal{H})}$. Suppose $$\mu_k(T):=\left\{ \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_k \end{pmatrix}\in\mathbb{C}^k: PTP= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 &\cdots & 0 \\ \vdots & \vdots & \ddots\\ 0 & 0 & \cdots & \lambda_k \\ \end{pmatrix}, \text{ for some orthogonal projection $P$ of rank } k \right\}$$ Is $\mu_k(T)$ convex in $\mathbb{C}^k$?
Comments: I can only see that $\mu_k(T)$ is non-empty but I could not construct desired projection of rank k to show convexity of $\mu_k(T).$
Any hint/comment regarding convexity of $\mu_k(T)$ is highly appreciated. Thanks in advance.