Let the following system $X'=AX+b(t)$ be a system of differential equations, where:
$A=\begin{pmatrix}1&-4\\1&1\end{pmatrix}$ and $b=\begin{pmatrix}\cos2t\\0\end{pmatrix}$
Then When trying to solve, the roots of the characteristic polynomial of the matrix are complex, therefore I'm going to use:
$$D=\begin{pmatrix}a&b\\-b&a\end{pmatrix}$$
since $\lambda_{1,2}=1\pm2i$ then $D=\begin{pmatrix}1&2\\-2&1\end{pmatrix}$ and $P=\begin{pmatrix}2&0\\0&-1\end{pmatrix}$, then $A=PDP^{-1}$
$X'=AX=PDP^{-1}X\implies P^{-1}X'=DP^{-1}X$ if we note $P^{-1}X=\begin{pmatrix}u\\v\end{pmatrix}$ then a matrix of fundamental solutions for the new system is: $M(t)=e^t\begin{pmatrix}cos(2t)&sin(2t)\\-sin(2t)&cos(2t)\end{pmatrix}$
Then $X=Pe^t\begin{pmatrix}cos(2t)&sin(2t)\\sin(2t)&cos(2t)\end{pmatrix}\begin{pmatrix}c_1\\c_2\end{pmatrix}$
All in all we get: $$X=e^t\begin{pmatrix}2c_1cos(2t)+2c_2sin(2t)\\-c_1sin(2t)-c_2sin(2t)\end{pmatrix}$$
But that is not correct, what am I missing?