Let $\lambda = a+ib\in \mathbb{C}\setminus \mathbb{R}$. For any $x\in\mathbb{C}^n$ we have
\begin{align}
\|(A^2-\lambda I)x\|^2\|x\|^2 &\ge \left|\langle (A^2-\lambda I)x,x \rangle\right|^2 \\
&= \left|\langle A^2x,x\rangle - \lambda\langle x,x\rangle\right|^2\\
&= \left|\left(\|Ax\|^2 - a\|x\|^2\right) + ib\|x\|^2\right|^2\\
&= \left(\|Ax\|^2 - a\|x\|^2\right)^2 + |b|^2\|x\|^2\\
&\ge |b|^2\|x\|^4
\end{align}
so $\|(A^2-\lambda I)x\| \ge |b|\|x\|$. Since $b\ne 0$, we see that $A^2-\lambda I$ is bounded from below and hence injective. Therefore $\lambda$ is not an eigenvalue of $A^2$.
Now let $\lambda < 0$. For any $x\in\mathbb{C}^n$ we have
$$\|(A^2-\lambda I)x\|\|x\| \ge \langle (A^2-\lambda I)x,x\rangle = \langle A^2x,x\rangle - \lambda\langle x,x\rangle = \|Ax\|^2 - \lambda \|x\|^2 \ge -\lambda \|x\|^2$$
so again $A^2-\lambda I$ is bounded from below and hence injective. Therefore $\lambda$ is not an eigenvalue of $A^2$.
We conclude that the eigenvalues of $A^2$ are contained in $[0, +\infty\rangle$.