Ref: "Introduction to Continuous Optimization" by Polyak.
Obs: Let ${ f : \mathbb{R} ^n \to \mathbb{R} }$ be a convex function. Let ${ x \in \mathbb{R} ^n }$ be in the convex hull of ${ x _1, \ldots, x _k \in \mathbb{R} ^n . }$ Then
$${ f(x) \leq \max _{ 1 \leq i \leq k} f(x _i) . }$$
Pf: Since ${ x }$ is in the convex hull we can write ${ x = \lambda _1 x _1 + \ldots + \lambda _k x _k }$ with ${ \lambda _i \geq 0 , \sum _{i = 1} ^k \lambda _i = 1 . }$ Note that by Jensen's inequality
$${ f(x) = f \left(\sum _{i = 1} ^k \lambda _i x _i \right) \leq \sum _{i = 1} ^k \lambda _i f(x _i) \leq \max _{ 1 \leq i \leq k} f(x _i) }$$
as needed.
Thm: Let ${ f : \mathbb{R} ^n \to \mathbb{R} }$ be a convex function, and ${ x _0 \in \mathbb{R} ^n . }$ Then ${ f }$ is continuous at ${ x _0. }$
Pf: WLOG we can assume ${ x _0 = 0 . }$ Let ${ (x _s) }$ be any sequence in ${ B(0, 1) \setminus \lbrace 0 \rbrace }$ converging to ${ 0 . }$ The goal is to show
$${ \text{To show: } \quad \lim _{s \to \infty} f(x _s) = f(0) . }$$
Consider the segment
$${ \left[ - \frac{x _s}{\lVert x _s \rVert}, 0, x _s, \frac{x _s}{\lVert x _s \rVert} \right] . }$$
Note that by convexity on ${ [0, x _s, \frac{x _s}{\lVert x _s \rVert}] }$
$${ f(x _s) \leq (1 - \lVert x _s \rVert) f(0) + \lVert x _s \rVert f\left( \frac{x _s}{\lVert x _s \rVert} \right) . }$$
Note that the unit sphere is in the convex hull of ${ \lbrace -1, 1 \rbrace ^n , }$ hence
$${ f \left( \frac{x _s}{\lVert x _s \rVert} \right) \leq \max _{x \in \lbrace -1 , 1 \rbrace ^n} f(x) =: M . }$$
Hence
$${ f(x _s) \leq (1 - \lVert x _s \rVert) f(0) + \lVert x _s \rVert M . }$$
Taking ${ \limsup }$ of the inequality, we have
$${ \limsup _{s \to \infty} f(x _s) \leq f(0) . }$$
Note that by convexity on ${ [ - \frac{x _s}{\lVert x _s \rVert}, 0, x _s] }$
$${ f(0) \leq \frac{\lVert x _s \rVert}{1 + \lVert x _s \rVert } f \left( - \frac{x _s}{\lVert x _s \rVert} \right) + \frac{1}{1 + \lVert x _s \rVert} f(x _s). }$$
Hence
$${ f(0) \leq \frac{\lVert x _s \rVert}{1 + \lVert x _s \rVert } M + \frac{1}{1 + \lVert x _s \rVert} f(x _s) . }$$
Taking ${ \liminf }$ of the inequality, we have
$${ f(0) \leq \liminf _{s \to \infty} f(x _s) . }$$
Combining both the inequalities, we have
$${ \limsup _{s \to \infty} f(x _s) = \liminf _{s \to \infty} f(x _s) = f(0) }$$
as needed. ${ \blacksquare }$