Instead of the matrix that appears in the question, we will use
$$
M=\begin{bmatrix}
\tfrac12&\tfrac12&0&0&0\\
\tfrac12&0&\tfrac12&0&0\\
\tfrac12&0&0&\tfrac12&0\\
\tfrac12&0&0&0&\tfrac12\\
0&0&0&0&0\vphantom{\tfrac12}
\end{bmatrix}\tag{1}
$$
A die having thrown $4$ odds will appear in the $5^{\text{th}}$ column only on the roll that it gets there and then is removed. The expected number of rolls will then be the $5^{\text{th}}$ column of
$$
v\sum_{n=0}^\infty nM^n=vM(I-M)^{-2}\tag{2}
$$
where $v=\begin{bmatrix}1&0&0&0&0\end{bmatrix}$, the initial state.
That is, $\mathrm{E}[N]$ is the $5^{\text{th}}$ column of
$$
\begin{align}
&\begin{bmatrix}
1&0&0&0&0
\end{bmatrix}
\begin{bmatrix}
\tfrac12&\tfrac12&0&0&0\\
\tfrac12&0&\tfrac12&0&0\\
\tfrac12&0&0&\tfrac12&0\\
\tfrac12&0&0&0&\tfrac12\\
0&0&0&0&0\vphantom{\tfrac12}
\end{bmatrix}
\begin{bmatrix}
16 & 8 & 4 & 2 & 1\vphantom{\tfrac12} \\
14 & 8 & 4 & 2 & 1\vphantom{\tfrac12} \\
12 & 6 & 4 & 2 & 1\vphantom{\tfrac12} \\
8 & 4 & 2 & 2 & 1\vphantom{\tfrac12} \\
0 & 0 & 0 & 0 & 1\vphantom{\tfrac12}
\end{bmatrix}^2
\\[6pt]
&=\begin{bmatrix}
1&0&0&0&0
\end{bmatrix}
\begin{bmatrix}
416 & 216 & 112 & 58 & 30 \\
386 & 200 & 104 & 54 & 28 \\
328 & 170 & 88 & 46 & 24 \\
216 & 112 & 58 & 30 & 16 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}\\[6pt]
&=\begin{bmatrix}
416 & 216 & 112 & 58 & \color{#C00000}{30}
\end{bmatrix}\tag{3}
\end{align}
$$
Thus, $\mathrm{E}[N]=30$
Another Approach
Using the method from this answer, we use $p=\frac12$ and $n=4$ to get
$$
\begin{align}
\mathrm{E}[N]
&=\frac{1-\left(\tfrac12\right)^4}{\left(\tfrac12\right)^4\left(1-\tfrac12\right)}\\[6pt]
&=30\tag{4}
\end{align}
$$
Validation of the Series
Equation $(2)$ is simply the power series
$$
\sum_{n=0}^\infty nx^n=\frac{x}{(1-x)^2}\tag{5}
$$
which converges for $|x|<1$, applied to $M$. We need to verify that the series converges when applied to $M$.
$$
\begin{align}
\sum_{n=0}^mnM^n(I-M)^2
&=\sum_{n=0}^mnM^n(I-2M+M^2)\\
&=\sum_{n=0}^m(nM^n-2nM^{n+1}+nM^{n+2})\\
&=\sum_{n=0}^mnM^n-2\sum_{n=1}^{m+1}(n-1)M^n+\sum_{n=2}^{m+2}(n-2)M^n\\
&=\left(M+\sum_{n=2}^mnM^n\right)-2\left(mM^{m+1}+\sum_{n=2}^m(n-1)M^n\right)\\
&+\left((m-1)M^{m+1}+mM^{m+2}+\sum_{n=2}^m(n-2)M^n\right)\\
&=M-(m+1)M^{m+1}+mM^{m+2}\tag{6}
\end{align}
$$
The characteristic polynomial of $M$ is $P(x)=16x^5-8x^4-4x^3-2x^2-x$ and the absolutely largest root of $P$ is $0.96378098774146265213$. Since this is less than $1$, the series converges. Therefore, we get
$$
\sum_{n=0}^\infty nM^n(I-M)^2=M\tag{7}
$$
which becomes $(2)$.