The angles alone do not suffice. We can find out all except $\angle UFO$, $\angle NFU$, $\angle EUF$, or $\angle FUN$; and although we know that $\angle UFO + \angle NFU = 100°$ and $\angle EUF + \angle FUN = 115°$, they are not sufficient. (Even the quadrilateral $UFEO$ does not help, since it just repeats what you find from $\triangle UFO$.)
I think the trick might be to add point $G$ between $O$ and $U$ such that $\overline{GE} \parallel \overline{UF}$. If we call the point where $\overline{OF}$ and $\overline{UE}$ intersect $X$, and the point where $\overline{OF}$ and $\overline{GE}$ intersect $Y$, triangles $\triangle UFX$ and $\triangle OGY$ are similar:
$$\begin{aligned}
\angle FUX &= \angle GOY = \angle NOF = 20° \\
\angle FXU &= \angle OXE = 180° - 60° - 35° = 85° \\
\angle UFO &= 180° - \angle FUX - \angle FXU = 75° \\
\end{aligned}$$
Without any loss of generality, we can choose a Cartesian coordinate system where $O$ is at origin, $F$ is on the positive $y$ axis at $(0, 1)$, and $E$ is at $(E_x , E_y)$ with $E_x \gt 0$.
Because the angles in $\triangle NEO$ sum to $180°$, $\angle ONE = 60°$, and $\angle EON = 60° + 20° = 80°$, we know that $\angle NEO = 180° - 60° - 80° = 40°$. Because $\angle UEO = 35°$, $\angle NEU = 40° - 35° = 5°$.
Similarly, using $\triangle FOE$, we know that $\angle OFE = 80°$.
The slope of $OE$ is $30°$ (because $\angle FOE = 60°$), and the slope of $FE = -10°$ (because $\angle OFE = 80°$). This allows us to find the location of $E$:
$$\begin{aligned}
y_{OE}(x) &= x \tan(30°) \\
y_{FE}(x) &= 1 - x \tan(10°) \\
y_{OE}(x) &= y_{FE}(x)
\end{aligned} \quad \iff \quad x = \frac{1}{\tan\left(\frac{\pi}{18}\right) + \sqrt{\frac{1}{3}}}$$
Substituting into $y_{OE}(x)$ or $y_{FE}(x)$ we get the $y$ coordinate. Thus,
$$\left\lbrace\begin{aligned}
E_x &= \frac{1}{\tan\left(\frac{\pi}{18}\right) + \sqrt{\frac{1}{3}}} \approx 1.326827896 \\
E_y &= \frac{1}{\sqrt{3}\tan\left(\frac{\pi}{18}\right) + 1} \approx 0.766044443 \\
\end{aligned}\right.$$
The slope of $OU$ is $70°$ (because $\angle NOF = 20°$), and the slope of $EU$ is $5°$ (because $\angle UEO = 35°$, $5°$ more than the slope of $OE$). Using these, we can solve the location of $U = (U_x , U_y)$ (noting that $U_x \lt 0$):
$$\begin{aligned}
y_{EU}(x) &= E_y + (E_x - x)\tan(5°) \\
y_{OU}(x) &= -x \tan(70°) \\
y_{EU}(x) &= y_{OU}(x)
\end{aligned}$$
i.e.
$$\left\lbrace\begin{aligned}
U_x &= \frac{E_y + E_x \tan\left(\frac{\pi}{36}\right)}{\tan\left(\frac{\pi}{36}\right) - \tan\left(\frac{7\pi}{18}\right)} \approx -0.33162803 \\
U_y &= -\tan\left(\frac{7\pi}{18}\right) U_x \approx 0.91114054 \\
\end{aligned}\right.$$
The $\angle UFO$ fulfills
$$\tan\left(\angle UFO\right) = \frac{-U_x}{1 - U_y}
\quad \iff \quad
\angle UFO = \arctan\left(\frac{U_x}{U_y - 1}\right)$$
which plugging in to a symbolic calculator (I used Maple) does not simplify to anything simple, but numerically yields
$$\angle UFO = 75.000000°$$
Using $\triangle FON$, we know $\angle NFO = 100°$. Since $\angle UFO = 75°$, $\angle NFU = 25°$. Because the slope of the line $EU$ is $5°$ and $OF$ is vertical, we know $\angle UXF = \angle OXE = 85°$, and $\angle OXU = \angle FXE = 95°$. Using $\triangle NEU$, we know $\angle EUN = 115°$. Using $\triangle XUF$, we know $\angle XUF = 180° - 75° - 85° = 20°$.
In other words, the angles in the $\triangle XUF$ are $85°$, $20°$, and $75°$, respectively, so there are no similar triangles in the figure we could have used.
Furthermore, while the angle between $x$ axis and line $OE$ is $30°$, the angle between $x$ axis and line $UF$ is $5° + 20° = 25°$, so those two lines are not parallel, either.
I suspect this was one of those puzzles that try to trick you, XKCD style, while the correct answer requires just some work and care for detail; no shortcuts.
Here's how saulspatz' answer implements the calculation.
Without loss of generality, choose a Cartesian coordinate system where $O$ is at origin, and $E$ is at $(1,0)$. All the other points have a positive $y$ coordinate.
Two lines intersecting above the $x$ axis, one through $O$ with angle $\phi_1$ to the $x$ axis, and the other through $E$ with angle $\phi_2$ to the $x$ axis, intersect at $(x, y)$:
$$\left\lbrace\begin{aligned}
y_1(x) &= x \tan(\phi_1) \\
y_2(x) &= (1 - x) \tan(\phi_2) \\
y_1(x) &= y_2(x) \\
\end{aligned}\right. \quad \implies \quad \left\lbrace\begin{aligned}
x &= \frac{\tan(\phi_2)}{\tan(\phi_1) + \tan(\phi_2)} \\
y &= \frac{\tan(\phi_1)\tan(\phi_2)}{\tan(\phi_1) + \tan(\phi_2)} \\
\end{aligned}\right. \tag{1}\label{NA1}$$
We can use $\eqref{NA1}$ to find both $U$ and $F$. For $U$, $\phi_1 = 80° = \frac{4}{9}\pi$ and $\phi_2 = 35° = \frac{7}{36}\pi$. Thus,
$$\left\lbrace\begin{aligned}
U_x &= \frac{\tan\left(\frac{7\pi}{36}\right)}{\tan\left(\frac{4\pi}{9}\right) + \tan\left(\frac{7\pi}{36}\right)} \approx 0.109897 \\
U_y &= \frac{\tan\left(\frac{4\pi}{9}\right) \tan\left(\frac{7\pi}{36}\right)}{\tan\left(\frac{4\pi}{9}\right) + \tan\left(\frac{7\pi}{36}\right)} \approx 0.623257 \\
\end{aligned}\right.$$
For $F$, $\phi_1 = 60° = \frac{1}{3}\pi$ and $\phi_2 = 40° = \frac{2}{9}\pi$ (because $\angle NEO = 180°-60°-20°-60° = 40°$):
$$\left\lbrace\begin{aligned}
F_x &= \frac{\tan\left(\frac{2\pi}{9}\right)}{\tan\left(\frac{\pi}{3}\right) + \tan\left(\frac{2\pi}{9}\right)} \\
F_y &= \frac{\tan\left(\frac{\pi}{3}\right) \tan\left(\frac{2\pi}{9}\right)}{\tan\left(\frac{\pi}{3}\right) + \tan\left(\frac{2\pi}{9}\right)} \\
\end{aligned}\right.$$
Next, we can use basic vector algebra,
$$\cos\left(\angle XYZ\right) = \frac{\overline{XY} \cdot \overline{ZY}}{\left\lVert\overline{XY}\right\rVert \left\lVert\overline{ZY}\right\rVert} = \frac{\overline{XY} \cdot \overline{ZY}}{\sqrt{\left(\overline{XY}\cdot\overline{XY}\right)\left(\overline{ZY}\cdot\overline{ZY}\right)}}$$
To solve the angle $\angle UFO$, we need vectors $\overline{UF}$ and $\overline{OF}$:
$$\left\lbrace\begin{aligned}
\overline{UF} &= \left [ \begin{matrix} F_x - U_x \\ F_y - U_y \end{matrix} \right ] \\
\overline{OF} &= \left [ \begin{matrix} F_x \\ F_y \end{matrix} \right ] \\
\end{aligned}\right.$$
This means the solution is
$$\angle UFO = \arccos\left( \frac{F_x (F_x - U_x) + F_y (F_y - U_y)}{\sqrt{\left( F_x^2 + F_y^2 \right)\left((F_x - U_x)^2 + (F_y - U_y)^2\right)}}\right)$$
I used Maple to try and see if this expression simplifies, but it does not seem to. Numerically, plugging in the above values does yield $\angle UFO = 75.000000°$.