I was able to solve this using Johan's hint. Rodrigo's answer is sleeker than mine (albeit the same idea), but I thought that I'd post this as well, since it may be easier to understand for someone with my background or less in this area of math.
Let $P$ be a convex polyhedron, defined as
$$
P := \left\{ x \in \mathbb{R}^n \middle| Ax \leq b \right\},
$$
where $A =
\begin{pmatrix}
\vec{a}_1^T \\ \vdots \\ \vec{a}_m^T
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{pmatrix}
\in \mathbb{R}^{m \times n}$ and $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$.
Define
$B :=
\begin{pmatrix}
b_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & b_m
\end{pmatrix}$
and
$Q_i :=
\begin{pmatrix}
a_{1i} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & a_{mi}
\end{pmatrix}$, $i = 1, \cdots, n$.
Note:
\begin{align*}
\sum_{i=1}^n x_i Q_i = \sum_{i=1}^n x_i \begin{pmatrix}
a_{1i} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & a_{mi}
\end{pmatrix}
&= \begin{pmatrix}
\sum_{i=1}^n a_{1i} x_i & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sum_{i=1}^n a_{mi} x_i
\end{pmatrix} \\
&=
\begin{pmatrix}
\vec{a}_1^T x & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \vec{a}_m^T x
\end{pmatrix} \\
&=
\begin{pmatrix}
\left( Ax \right)_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \left( Ax \right)_m
\end{pmatrix}.
\end{align*}
Now define the spectrahedron
$$
P' := \left\{ x \in \mathbb{R}^n \middle| \sum_{i = 1}^n x_i Q_i \preceq B \right\}.
$$
Claim: $P = P'$.
Proof:
"$\subseteq$":
Let $x \in P$, i.e. $Ax \leq b \iff b_i - (Ax)_i \geq 0$ for all $i \in \{1, \cdots, n\}$.
Let $z \in \mathbb{R}^m$.
$$
z^T \left(B - \sum_{i=1}^n x_i Q_i \right)z = \sum_{j=1}^m z_j^2 \left( b_j - \left( \sum_{i=1}^n x_i Q_i \right)_{jj} \right),
$$
since $B - \sum_{i=1}^n x_i Q_i$ is a diagonal matrix.
From the the note above, we have
$$
z^T \left(B - \sum_{i=1}^n x_i Q_i \right)z = \sum_{j=1}^m z_j^2 \underbrace{\left( b_j - (Ax)_j \right)}_{\geq 0 \text{ since } x \in P} \geq 0.
$$
Hence $B - \sum_{i=1}^n x_i Q_i \succeq 0$ and $x \in P'$.
"$\supseteq$":
Let $x \in P'$, i.e. $z^T \left( B - \sum_{i=1}^n x_i Q_i \right) z \geq 0$ $\forall z \in \mathbb{R}^m$.
Suppose that $Ax \nleq b$.
Define the index set $J := \left\{ j \in \{1, \cdots, m\} \middle| (Ax)_j > b_j \right\}$, which is nonempty by hypothesis.
Define $z \in \mathbb{R}^m$ by $z_j = 1$ if $j \in J$, $z_j = 0$ otherwise. Then
\begin{align*}
z^T \left( B - \sum_{i=1}^n x_i Q_i \right) z &= \sum_{j \in J} z_j^2 \left( b_j - \left( \sum_{i=1}^n x_i Q_i \right)_{jj} \right) \\
&= \sum_{j \in J} \underbrace{z_j^2}_{=1} \underbrace{ \left( b_j - \left( Ax \right)_j \right) }_{ < 0 \text{ since } j \in J} < 0,
\end{align*}
which contradicts $x \in P'$. Hence $Ax \leq b$, so $x \in P$.