We are required to prove that two random variables $(X,Y)$ are independent if and only if $m_{X,Y}(t_1,t_2)=m_X(t_1)m_Y(t_2)$ where $m(\_)$ is the moment generating function.
Supposing $(X,Y)$ are independent and then proving $m_{X,Y}(t_1,t_2)=m_X(t_1)m_Y(t_2)$ is trivial since for two independent variables $X,Y$, $E(g_1(X)g_2(Y))=E(g_1(X))E(g_2(Y))$.
Now conversely, we say, $m_{X,Y}(t_1,t_2)=m_X(t_1)m_Y(t_2)$, i.e
$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{t_1x+t_2y}f_{X,Y}(x,y)dydx=\int_{-\infty}^{\infty}e^{t_1x}f_X(x)dx\int_{-\infty}^{\infty}e^{t_2y}f_Y(y)dy$=$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{t_1x+t_2y}f_X(x)f_Y(y)dydx$
Hence,
$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{t_1x+t_2y}f_{X,Y}(x,y)dydx-\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{t_1x+t_2y}f_X(x)f_Y(y)dydx=0$
that is,
$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{t_1x+t_2y}(f_{X,Y}(x,y)-f_X(x)f_Y(y))dy\:dx=0$
Now, if $(f_{X,Y}(x,y)-f_X(x)f_Y(y))\geq 0$ we have what we want, but I am not sure whether that is true in general, is it ?
Can anyone help ?