The method here is to repeatedly putting new variables:
$5a-12b=13 \Leftrightarrow 5a=12b+13 \Leftrightarrow a=\frac{12b+13}{5}=2b+2+\frac{2b+3}{5}$
Put $\frac{2b+3}{5}=c$ with $c$ is an integer (because $a$ or $2b+2+c$ is an integer)
$\Leftrightarrow 2b+3=5c \Leftrightarrow 2b-5c=-3$ or $b=\frac{5c-3}{2}$.
$b$ is an integer $\Leftrightarrow 5c-3$ is divisible by $2 \Leftrightarrow c$ is an odd number.
Put $c=2k+1$ ($k$ is an integer), we have $b= \frac{5c-3}{2}=\frac{5(2k+1)-3}{2}=5k+1.$
$\Rightarrow a=\frac{12b+13}{5}=\frac{12(5k+1)+13}{5}=12k+5$.
The equation has infinite solutions: $\begin{cases}a=12k+5\\b=5k+1\end{cases}$, $\forall k\in \mathbb{Z}$.
Trial-and-error can still be applied for any numbers multiplied by $a$, $b$, as long as their $GCD$ is $1$.
For example this ugly equation: $73a+89b=3$. You won't have time to do trial-and-error, so here's a way to make it smaller:
Put $a=\frac{3-89b}{73}=\frac{3-16b}{73}-b$, then $\frac{3-16b}{73} \in \mathbb{Z}$ because $a,b\in \mathbb{Z}$.
Put $c=\frac{3-16b}{73}$, then $3-16b=73c$ or $b=\frac{3-73c}{16}=\frac{3-9c}{16}-4c$, then $\frac{3-9c}{16} \in \mathbb{Z}$ because $b,c\in \mathbb{Z}$.
Put $d=\frac{3-9c}{16}$, then $3-9c=16d$ or $c=\frac{3-16d}{9}=\frac{3-7d}{9}-d$, then $\frac{3-7d}{9} \in \mathbb{Z}$ because $c,d\in \mathbb{Z}$.
Put $e=\frac{3-7d}{9}$, then $3-7d=9e$ or $d=\frac{3-9e}{7}=\frac{3-2e}{7}-e$, then $\frac{3-2e}{7} \in \mathbb{Z}$ because $d,e\in \mathbb{Z}$.
Put $f=\frac{3-2e}{7}$, then $3-2e=7f$ or $e=\frac{3-7f}{2}=\frac{1-f}{2}+1-3f$, then $\frac{1-f}{2} \in \mathbb{Z}$ because $e,f\in \mathbb{Z}$.
$e$ would be an integer if and only if $f=2k+1$ or $f$ odd
$\Rightarrow e=-7k-2$
$\Rightarrow d=9k+3$
$\Rightarrow c=-16k-5$
$\Rightarrow {\begin{cases}a=-89k-28\\b=73k+23\end{cases}}$