Solve the following equation: $$X'=\pmatrix { 2 & 5 \\ -5 & 8}X$$ $$x(0)=(5,5)^t$$
I already got out the followings:
$$\lambda_{1,2} = 5 \pm 4i$$ $$v_{1} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} - i\cdot \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$ $$v_{1} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + i\cdot \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
And so far I have this(Sry its messy): $$\begin{align*}\vec{x}_{1}(t) = (3-4i)e^{5t} \begin{pmatrix}a\cos(4t)+b\sin(4t)\end{pmatrix}\end{align*}$$ $$\begin{align*}\vec{x}_{2}(t) = 5\cdot e^{5t} \begin{pmatrix}c\cos(4t)+d\sin(4t)\end{pmatrix}\end{align*}$$
I dont know if this is right so far... but I also tried to sum up x_1:
This is the right answer in the end:$$\begin{align*}\vec{x}(t) = e^{5t} \begin{pmatrix}5\cos(4t)+\frac{5}{2}\sin(4t)\\ 5\cos(4t)-\frac{5}{2}\sin(4t)\end{pmatrix}\end{align*}$$
tyx