For all $k\leq n$, let $Q_{k,n}$ the set of all finite sequences of positive integer $\alpha=\{\alpha_{i}\}_{i=1}^{i=k}$ such that $$
1\leq \alpha_1 < \alpha_2< \ldots <\alpha_{k-1}< \alpha_k\leq n.
$$
If $A$ happens to be a $n\times n$ matrix and if $\alpha,\beta\in Q_{k,n}$ then $A(\alpha|\beta)$ denote a $(n-k)\times(n-k)$ submatrix submatrix of $A$ obtained by deleting the rows $\alpha$ and the columns $\beta$; Let $A[\alpha|\beta]$ the complement of $A(\alpha|\beta)$ in $A$.
THEOREM 1 (Expansion of the permanent of the sum of two matrices)
Let $A$ and $B$ be arbitrary $m\times m$ matrices. Then
$$
\mathrm{per}(A+B)=\mathrm{per}(B)+\sum_{k=1}^{m-1}\sum_{\alpha,\beta\in Q_{k,m}}\mathrm{per}A[\alpha|\beta]\cdot\mathrm{per}A(\alpha|\beta)+\mathrm{per}(A)
$$
See also in wikipedia verbete on the permanents and its references.