Let
$$
I = \sum_{n=1}^{\infty} \frac{2^{2n} H_n}{n^3 \binom{2n}{n}}
$$
from here we have
$$\arcsin^2(x)=\frac12\sum_{n=1}^\infty\frac{(2x)^{2n}}{n^2{2n\choose n}}$$
replace $x$ by $\sqrt{x}$ we get
$$\sum_{n=1}^\infty\frac{2^{2n}x^n}{n^2{2n\choose n}}=2\arcsin^2(\sqrt{x})$$
multiply both sides by $-\frac{\ln(1-x)}{x}$ then $\int_0^1$ and use $-\int_0^1 x^{n-1}\ln(1-x)dx=\frac{H_n}{n}$ we get
$$\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^3{2n\choose n}}=2\int_0^1\frac{\arcsin^2(\sqrt{x})\ln(1-x)}{x}dx\overset{\sqrt{x}=\sin\theta}{=}-8\int_0^{\pi/2}x^2\cot x\ln(\cos x)\ dx$$
Substitute $\tan x = t$, then the integral becomes
$$
I = 4 \int_0^{\infty} \frac{\arctan^2(t) \ln(1 + t^2)}{t(1 + t^2)} \, dt = 4A ,
$$
where
$$
A = \int_0^{\infty} \frac{\arctan^2(t) \ln(1 + t^2)}{t(1 + t^2)} \, dt .
$$
Now observe:
$$
\ln(1 + ix) = \frac{1}{2} \ln(1 + x^2) + i \arctan(x) .
$$
Cubing both sides and taking the real part:
$$
\text{Re}\{\ln^3(1 + ix)\} = \frac{1}{8} \ln^3(1 + x^2) - \frac{3}{2} \ln(1 + x^2) \arctan^2(x) .
$$
Hence,
$$
A = -\frac{2}{3} \, \text{Re} \int_0^{\infty} \frac{\ln^3(1 + ix)}{x(1 + x^2)} \, dx + \frac{1}{12} \int_0^{\infty} \frac{\ln^3(1 + x^2)}{x(1 + x^2)} \, dx .
$$
Define:
$$
A = -\frac{2}{3} \, \text{Re}(B) + \frac{1}{12} C ,
$$
where
$$
B = \int_0^{\infty} \frac{\ln^3(1 + ix)}{x(1 + x^2)} \, dx .
$$
Let $\frac{1}{1 + ix} = t$, so we obtain:
$$
B = \int_0^1 \frac{t \ln^3(t)}{(1 - t)(1 - 2t)} \, dt .
$$
Using partial fractions:
$$
B = \int_0^1 \frac{\ln^3(t)}{1 - 2t} \, dt - \int_0^1 \frac{\ln^3(t)}{1 - t} \, dt ,
$$
$$
B = 6 \zeta(4) - 3 \mathrm{Li}_4(2) .
$$
From:
A. S. Olaikhan, An Introduction to the Harmonic Series and Logarithmic Integrals: For High School Students Up To Researchers, 2nd ed., self-published, Phoenix, AZ, 2023,
we have the identity:
$$
\mathrm{Li}_4(2) = -\mathrm{Li}_4\left(\frac{1}{2}\right) + 2\zeta(4) + \ln^2(2)\zeta(2) - \frac{1}{24} \ln^4(2) - \frac{\pi}{6} \ln^3(2)i .
$$
Also, define:
$$
C = \int_0^{\infty} \frac{\ln^3(1 + x)}{x(1 + x)} \, dx .
$$
Split the integral $C$ at $x = 1$:
\begin{align*} C &= \int_0^1 \frac{\ln^3(1 + x)}{x} \, dx + 3 \int_0^1 \frac{\ln^2(x) \ln(1 + x)}{1 + x} \, dx \\
&{}-{} 3 \int_0^1 \frac{\ln^2(1 + x) \ln(x)}{1 + x} \, dx - \int_0^1 \frac{\ln^3(x)}{1 + x} \, dx .
\end{align*}
Define:
$$
\begin{aligned}
I_1 &= \int_0^1 \frac{\ln^3(1 + x)}{x} \, dx , \\
I_2 &= \int_0^1 \frac{\ln^2(x) \ln(1 + x)}{1 + x} \, dx , \\
I_3 &= \int_0^1 \frac{\ln^2(1 + x) \ln(x)}{1 + x} \, dx , \\
I_4 &= \int_0^1 \frac{\ln^3(x)}{1 + x} \, dx .
\end{aligned}
$$
Using integration by parts on $I_3$, we get:
$$
3I_3 + I_1 = 0 \quad \Rightarrow \quad I_3 = -\frac{1}{3} I_1 .
$$
So,
$$
C = 2I_1 + 3I_2 - I_4 .
$$
From Olaikhan again:
$$
\begin{aligned}
I_1 &= 6 \zeta(4) - \frac{21}{4} \ln(2) \zeta(3) + \frac{3}{2} \ln^2(2) \zeta(2) - \frac{1}{4} \ln^4(2) - 6 \mathrm{Li}_4\left(\frac{1}{2}\right) , \\
I_2 &= 4 \mathrm{Li}_4\left(\frac{1}{2}\right) - \frac{15}{4} \zeta(4) + \frac{7}{2} \ln(2) \zeta(3) - \ln^2(2)\zeta(2) + \frac{1}{6} \ln^4(2) , \\
I_4 &= -\frac{21}{4} \zeta(4) .
\end{aligned}
$$
Now, return to:
$$
I = 4A = -\frac{8}{3} \text{Re}\{B\} + \frac{1}{3} C = -\frac{8}{3} \text{Re}\{B\} + \frac{2}{3} I_1 + I_2 - \frac{1}{3} I_4 .
$$
Hence, we arrive at:
$$
\sum_{n=1}^{\infty} \frac{2^{2n} H_n}{n^3 \binom{2n}{n}} = -8 \, \mathrm{Li}_4\left(\frac{1}{2}\right) + \zeta(4) + 8 \ln^2(2) \zeta(2) - \frac{1}{3} \ln^4(2) .
$$
And hence, dividing both sides by by -8
$$
\int_0^{\frac{\pi}{2}} x^2 \cot x \ln(\cos x) \, dx = \operatorname{Li}_4\left(\frac{1}{2}\right) - \frac{1}{8} \zeta(4) - \ln^2(2)\zeta(2) + \frac{1}{24} \ln^4(2)
$$