Let $X \neq \lbrace 0 \rbrace$ be a reflexive space, and let $f \in X'$. Show that there exists $x \in X$ with $\|x\|=1$ and $f(x)=\|f\|$.
The definition of a reflexive space: $X$ is called reflexive if $J_X(X)=X''$ where $J_X: X \to X''$ defined by $J_Xx(f)=f(x)$ with $x \in X$ and $f \in X'$.
How to find this such $x$?