Well I am not an expert of probability but I think this could be a potential answer.
Given $f_{X,Y}(x,y)=2e^{-x}e^{-2y},~x\ge0,y\ge0$, we first compute the probability $P(Y<4 \cap X>1)$:
$$P(Y<4 \cap X>1)=P(Y<4\mid X>1)\cdot P(X>1)=\int_0^4 \int_1^\infty2e^{-x} e^{-2y} \, dx \, dy = \int_0^42e^{-2y}[-e^{-x}]_1^\infty dy= \int_0^42e^{-2y}e^{-1}\,dy=\frac{1}{e}[-e^{-2y}]_0^4=\frac{1}{e}(1-e^{-8})$$
Then we compute the marginal distribution of X
$$\int_0^\infty f_{X,Y}(x,y)\,dy = \int_0^\infty 2e^{-x}e^{-2y}\,dy=e^{-x}[-e^{-2y}]_0^\infty=e^{-x}$$
Then,
$$P(X>1)=\int_1^\infty e^{-x}\,dx=[-e^{-x}]_1^\infty=0+e^{-1}=e^{-1}$$
Finally, we obtain the conditional probability
$$P(Y<4\mid X>1) = \frac{P(Y<4 \cap X>1)}{P(X>1)}=\frac{\frac{1}{e}(1-e^{-8})}{\frac{1}{e}}=1-e^{-8}$$
Actually, it is notable that in this case, $X$ and $Y$ are independent but it is not in the scope of this question. Hope it helps.