I am looking for n-ellipse parametric equation. n-ellipse is an equidistant curve from n foci.
https://en.wikipedia.org/wiki/N-ellipse
The implicit equation is provided in the document:
http://math.ucsd.edu/~njw/PUBLICPAPERS/kellipse_imaproc_toappear.pdf
The Theorem 2.1.
And also just would like to share my maple code for this (3 points):
interface(rtablesize = 20)
with(LinearAlgebra)
M := proc (u, v) options operator, arrow; Matrix(2, 2, [[x-u, y-v], [y-v, -x+u]]) end proc
M1 := M(u1, v1)
M2 := M(u2, v2)
M3 := M(u3, v3)
I2 := IdentityMatrix(2, 2)
U8 := KroneckerProduct(KroneckerProduct(M1, I2), I2)+KroneckerProduct(KroneckerProduct(I2, M2), I2)+KroneckerProduct(KroneckerProduct(I2, I2), M3)
D8 := K*IdentityMatrix(8, 8)
H8 := D8+U8
So the result for this particular 3-point case is:
Matrix(8, 8, [[K+3*x-u1-u2-u3, y-v3, y-v2, 0, y-v1, 0, 0, 0], [y-v3, K+x-u1-u2+u3, 0, y-v2, 0, y-v1, 0, 0], [y-v2, 0, K-u1+u2+x-u3, y-v3, 0, 0, y-v1, 0], [0, y-v2, y-v3, K-u1+u2-x+u3, 0, 0, 0, y-v1], [y-v1, 0, 0, 0, K+u1-u2+x-u3, y-v3, y-v2, 0], [0, y-v1, 0, 0, y-v3, K+u1-u2-x+u3, 0, y-v2], [0, 0, y-v1, 0, y-v2, 0, K-x+u1+u2-u3, y-v3], [0, 0, 0, y-v1, 0, y-v2, y-v3, K-3*x+u1+u2+u3]])

