Let $X_1, \cdots, X_n$ be iid from a uniform distribution $U[\theta-\frac{1}{2}, \theta+\frac{1}{2}]$ with $\theta \in \mathbb{R}$ unknown. Show that the statistic $T(\mathbf{X}) = (X_{(1)}, X_{(n)})$ is minimal sufficient but not complete.
I am having trouble proving that it is not complete. My idea is as follows. If I can somehow create two functions of $T(\mathbf{X})$, say $f(X_{(1)}, X_{(n)})$ and $g(X_{(1)}, X_{(n)})$ where $f \neq g$ but show that both are unbiased estimators of $\theta$, then $T(\mathbf{X}) = (X_{(1)}, X_{(n)})$ cannot possibly be complete. Is this the right approach? I am stuck because I am unsure 1) How to find the expectations/distributions of the order statistics and 2) How to construct $f$ and $g$.
Any help would be appreciated!
Using this definition, I can see where you are heading with your hint, if we can show that $E[g(X_{(1)}, X_{(2)})]=0$ for all $\theta$ but there exists a $\theta$ such that $g(X_{(1)}, X_{(2)}) \neq 0$, then we are done. However, I am not sure how to complete the argument for this.
– elbarto Sep 22 '17 at 02:40