In this paper, there's an identity that I can't prove to my satisfaction, (there's a similar statement in here) which is that, given a permanent of a $(\mathbf{k,l})$-replicated matrix $A$, (written $A^{(\mathbf{k,l})}$), $$\sum_{\mathbf{k,l}\geq 0}\mathrm{per}(A^{(\mathbf{k,l})})\frac{\mathbf{x}^{\mathbf{k}}\mathbf{y}^{\mathbf{l}}}{\mathbf{k}!\mathbf{l}!}=\exp{\mathbf{x^{T}}A\mathbf{y}}$$
Notation: $\mathbf{x^{k}}=\prod_{i=1}^{n}x_{i}^{k_{i}}$, $\mathbf{k}!=\prod_{i=1}^{n}k_{i}!$, and $A^{(\mathbf{k,l})}$ is the block matrix with the entry $a_{i,j}$ repeated $k_{i}\times l_{j}$ times.
This is related to MacMahon's Master Theorem where $$ \sum_{\mathbf{k}\geq 0}\mathrm{per}(A^{(\mathbf{k,k})})\frac{\mathbf{x}^{\mathbf{k}}}{\mathbf{k}!}=\det (1-XA)^{-1} $$ with $X_{ij}=x_{i}\delta_{ij}$ and $A=A^{(\mathbf{1,1})}$.