Improper Riemann integrals are usually defined via limits.
Standard Definition: Let $f:[0, \infty) \to \mathbb{R}$. We say $f$ is improper Riemann integrable on $[0, \infty)$ if it is proper Riemann integrable on compact intervals and the following limit exists
$$ \lim_{t \to \infty} \int_{0}^{t} f(x) \ dx$$
Instead of this, can we define the improper integral with "partitions" of $[0, \infty)$ as we do with the normal Riemann integral?
Preliminaries: A partition of $[0, \infty)$ is a strictly increasing sequence $p:\mathbb{N}_{\geq 1} \to [0, \infty)$ with $p(1) = 0$ and $$\lim_{n \to \infty} p(n) = +\infty$$
A tagging of a given partition $p$ is any sequence $t:\mathbb{N}_{\geq 1} \to [0, \infty)$ such that $t(n) \in [p(n), p(n+1)]$ for all $n \geq 1$.
A refinement of a partition $p$ is a partition $p'$ which contains $p$ as a subsequence.
The mesh of a partition $p$ is the quantity $\sup\{p(n+1) - p(n): n \in \mathbb{N}_{\geq 1}\}$. It is denoted as $||p||$. $||p|| = +\infty$ is possible.
There's two ways we can go about our definition.
Definition 1: Let $f:[0, \infty) \to \mathbb{R}$. We say $f$ is improper Riemann integrable on $[0, \infty)$ if there is a real number $L$ such that for all $\epsilon>0$ there is a partition $p_{\epsilon}$ such that for every refinement $p_{\epsilon}'$ of $p_{\epsilon}$ and any tagging $t$ of $p_{\epsilon}'$ the sum $$S(f, p_{\epsilon}', t) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} [p_{\epsilon}'(n+1) - p_{\epsilon}'(n)]f(t(n))$$ converges and
$$|L - S(f, p_{\epsilon}', t)| < \epsilon$$
Definition 2: Let $f:[0, \infty) \to \mathbb{R}$. We say $f$ is improper Riemann integrable on $[0, \infty)$ if there is a real number $L$ such that for all $\epsilon>0$ there is a $\delta>0$ such that for every partition $p_{\delta}$ with $||p_{\delta}||<\delta$ and any tagging $t$ of $p_{\delta}$, the sum $$S(f, p_{\delta}, t) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} [p_{\delta}(n+1) - p_{\delta}(n)]f(t(n))$$ converges and
$$|L - S(f, p_{\delta}, t)| < \epsilon$$
Problem: Are all of these definitions equivalent?
Partial answers are fine.