$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iverson}[1]{\left[\left[\,{#1}\,\right]\right]}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
& \color{#44f}{\sum_{m = 0}^{n}{m \choose j}
{n - m \choose k - j}} =
\bracks{z^{n}}\sum_{\ell = 0}^{\infty}z^{\ell}
\sum_{m = 0}^{\ell}{m \choose j}{\ell - m \choose k - j}
\\[5mm] = & \
\bracks{z^{n}}\sum_{m = 0}^{\infty}
{m \choose j}\sum_{\ell = m}^{\infty}z^{\ell}
{\ell - m \choose k - j}
\\[5mm] = & \
\bracks{z^{n}}\sum_{m = 0}^{\infty}
{m \choose j}\sum_{\ell = 0}^{\infty}z^{\ell + m}\,
{\ell \choose k - j}
\\[5mm] = & \
\bracks{z^{n}}\bracks{\sum_{m = 0}^{\infty}
{m \choose j}z^{m}}
\bracks{\sum_{\ell = 0}^{\infty}
{\ell \choose k - j}z^{\ell}}\label{1}\tag{1}
\\ - &------------------------------
\\ & \mbox{However,}\
\color{red}{\sum_{k = 0}^{\infty}{k \choose s}z^{k}} =
\sum_{k = s}^{\infty}{k \choose s}z^{k} =
\sum_{k = 0}^{\infty}{k + s \choose s}z^{k + s}
\\[5mm] = & \
z^{s}\sum_{k = 0}^{\infty}{k + s \choose k}z^{k} =
z^{s}\sum_{k = 0}^{\infty}\bracks{{-s - 1 \choose k}\pars{-1}^{k}}z^{k}
\\[5mm] = & \
\color{red}{z^{s}\pars{1 - z}^{-s - 1}}\label{2}\tag{2}
\\ - & ------------------------------
\\ & \mbox{Therefore,}\ (\ref{1})\ \mbox{and}\ (\ref{2})
\implies
\\ & \color{#44f}{\sum_{m = 0}^{n}{m \choose j}
{n - m \choose k - j}}
\\[5mm] = & \
\bracks{z^{n}}\bracks{z^{j}\,\pars{1 - z}^{-j - 1}\,}
\bracks{z^{k - j}\,\pars{1 - z}^{-k + j - 1}\,}
\\[5mm] = & \
\bracks{z^{n}}z^{k}\,\,\pars{1 - z}^{\pars{-j - 1}\ +\ \pars{-k + j - 1}}\,\,\,\,\, =
\bracks{z^{n - k}}\pars{1 - z}^{-k - 2}
\\[5mm] = & \ {-k - 2 \choose n - k}\pars{-1}^{n - k}
\\[5mm] = & \
{-\bracks{-k - 2} + \bracks{n - k} - 1 \choose n - k} = {n + 1 \choose n - k}
\\[5mm] = & \ \bbx{\color{#44f}{n + 1 \choose k + 1}} \\ &
\end{align}