Definition: Let $F$ be a real valued function defined on a subset $E$ of $\mathbb{R}$. We say that $F$ is continuous at a point $ x \in E$ iff for each $\epsilon > 0$, there is a $\delta > 0$, such that if $x' \in E$ and $|x'-x|<\delta$, then $|f(x') - f(x)| < \epsilon$.
This definition is taken straight out of Royden-Fitzpatrick Real Analysis.
My question is more related to the intuition behind this definition:
If I take the following function $F$ defined on the natural numbers(which are a subset of $\mathbb{R}$ of course), for which $F(x) = x$, that is, the identity on the natural numbers but that treats them as a subset of $\mathbb{R}$.
Now this function is continous at every point of $\mathbb{N}$. If we take $\epsilon \le 1$, then we can always take some $\delta < 1$. If we take an $\epsilon > 1$, then we can always take a respective $\delta < \epsilon$, but $\delta > $ the largest natural number smaller than epsilon. So, indeed this function is continuous. Is this supposed to happen, and can't we somehow use this definition to show continuity of functions which are intuitively discontinuous at some points.
Is the key element here that we say that the function is continuous/discontinuous at $x$ as a point of a specific set $E$?
(1) $\lim_{x\to x_0}f(x)$ exists
(2) $f$ is defined at $x_0$, that is $f(x_0)$ exists [This is obvious if your $x_0$ lies in the domain]
(3) $f(x_0)=\lim_{x\to x_0}f(x)$...In the case where the domain is $\Bbb N$ can you tell me what is the value of $\lim_{x\to x_0}f(x)$ ?
– Naive Jul 12 '17 at 13:54