Well, if you substitute:
$$\text{u}:=\frac{\sqrt{2}\cdot\cos\left(\frac{x}{2}\right)}{\sqrt{1+\cos\left(\text{k}\right)}}\tag1$$
You end up with:
$$\mathscr{I}_{\space\text{k}}:=\int_\text{k}^\pi\sqrt{\frac{1-\cos\left(x\right)}{\cos\left(\text{k}\right)-\cos\left(x\right)}}\space\text{d}x=-2\int_{\frac{\sqrt{2}\cdot\cos\left(\frac{\text{k}}{2}\right)}{\sqrt{1+\cos\left(\text{k}\right)}}}^0\frac{1}{\sqrt{1-\text{u}^2}}\space\text{d}\text{u}=$$
$$-2\cdot\left\{\arcsin\left(0\right)-\arcsin\left(\frac{\sqrt{2}\cdot\cos\left(\frac{\text{k}}{2}\right)}{\sqrt{1+\cos\left(\text{k}\right)}}\right)\right\}=2\cdot\arcsin\left(\frac{\sqrt{2}\cdot\cos\left(\frac{\text{k}}{2}\right)}{\sqrt{1+\cos\left(\text{k}\right)}}\right)=$$
$$\pi\cdot\sqrt{\cos^2\left(\frac{\text{k}}{2}\right)}\cdot\sec\left(\frac{\text{k}}{2}\right)\tag2$$
And, use:
$$\cos\left(\frac{\text{k}}{2}\right)\cdot\sec\left(\frac{\text{k}}{2}\right)=1\tag3$$