1

Suppose $H$ be a Hilbert space and $U,V\in B(H)$ bounded linear operators. If operator $V$ is closed range and injective, under which conditions operator $UV$ is closed range too?

glS
  • 7,963
niki
  • 3,532

1 Answers1

1

The range of $V$ is a Banach space since it is a closed subspace of $H$. So you only need to answer, when is the range of a bounded operator between two Banach spaces closed.

That was already answered here When is the image of a linear operator closed?