How to prove if the following limit exists?
If it exists, what's the value?
$$\lim\limits_{n\to\infty}\dfrac{\sum\limits_{k=0}^n\log\binom{n}{k}}{n^2}$$
Thanks!
How to prove if the following limit exists?
If it exists, what's the value?
$$\lim\limits_{n\to\infty}\dfrac{\sum\limits_{k=0}^n\log\binom{n}{k}}{n^2}$$
Thanks!
Notice that we can write
$$ \frac{1}{n^2} \sum_{k=1}^{n} \log \binom{n}{k} = \frac{1}{n}\sum_{k=1}^{n} \left( \frac{2k-1}{n} - 1 \right) \log\left(\frac{k}{n}\right). $$
Taking $n \to \infty$, this converges to the integral
$$ \int_{0}^{1} (2x-1)\log x \, \mathrm{d}x = \frac{1}{2}. $$
$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \lim_{n \to \infty}{\sum_{k = 0}^{n}\ln\pars{n \choose k} \over n^{2}} & = \lim_{n \to \infty} {\sum_{k = 1}^{n + 1}\ln\pars{n + 1 \choose k} - \sum_{k = 1}^{n}\ln\pars{n \choose k} \over \pars{n + 1}^{2} - n^{2}} = \lim_{n \to \infty} {\sum_{k = 1}^{n}\ln\pars{{n + 1 \choose k}/{n \choose k}} \over 2n + 1} \\[5mm] & = {1 \over 2}\,\lim_{n \to \infty} {\sum_{k = 1}^{n}\bracks{\ln\pars{n + 1} - \ln\pars{n - k + 1}} \over n + 1/2} \\[5mm] & = {1 \over 2}\,\lim_{n \to \infty}{n\ln\pars{n + 1} - \ln\pars{n!} \over n + 1/2} \\[5mm] & = {1 \over 2}\,\lim_{n \to \infty}\bracks{\vphantom{\Large A}% \pars{n + 1}\ln\pars{n + 2} - n\ln\pars{n + 1} - \ln\pars{n + 1}} \\[5mm] & = {1 \over 2} \lim_{n \to \infty}\bracks{\pars{n + 1}\ln\pars{1 + 2/n \over 1 + 1/n}} = \bbx{1 \over 2} \end{align}