Let $A$ be a ring and let $P$ be a finitely generated $A$-module.
Show that the following conditions are equivalent:
i)$\exists \ A$-module $Q$ and $r\in \mathbb{N}$ and $P\oplus Q \cong A^{\oplus r}$
ii) For any $A$- module $M$ and any surjective $A$-module homomorphism $\pi:M\rightarrow P$, there exist an $A$-module homomorphism $s : P \rightarrow M$ such that $\pi \circ s = id_P$
iii) For any $A$-Module $M, N$ and any $A$-module homomorphisms
$f: P\rightarrow N$ and $g : M\rightarrow N$ with $g$ surjective
There exist an $A$-module homomorphism $h:P\rightarrow M$ such that $g \circ h = f$
I'm facing difficulties in showing (i) $\rightarrow$ (ii).
Any help/insights will be deeply appreciated